Solveeit Logo

Question

Question: If \(\tan\frac{\theta}{2} = t,\) then \(\frac{1 - t^{2}}{1 + t^{2}}\) is equal to...

If tanθ2=t,\tan\frac{\theta}{2} = t, then 1t21+t2\frac{1 - t^{2}}{1 + t^{2}} is equal to

A

cosθ\cos\theta

B

sinθ\sin\theta

C

secθ\sec\theta

D

cos2θ\cos 2\theta

Answer

cosθ\cos\theta

Explanation

Solution

1t21+t2\frac{1 - t^{2}}{1 + t^{2}}= 1tan2θ21+tan2θ2\frac{1 - \tan^{2}\frac{\theta}{2}}{1 + \tan^{2}\frac{\theta}{2}} (∴ tanθ/2=t)\tan\theta/2 = t) = cos(2.θ/2)=cosθ\cos(2.\theta/2) = \cos\theta.