Solveeit Logo

Question

Question: If \(\tan(\cot x) = \cot(\tan x)\), then \(\sin 2x\) equal to...

If tan(cotx)=cot(tanx)\tan(\cot x) = \cot(\tan x), then sin2x\sin 2x equal to

A

π\pi

B

2π2\pi

C

4π(2n+1)4\pi(2n + 1)

D

None of these

Answer

2π2\pi

Explanation

Solution

tan(cotx)=cot(tanx)\tan(\cot x) = \cot(\tan x)tan(cotx)=tan(π2tanx)\tan(\cot x) = \tan\left( \frac{\pi}{2} - \tan x \right)

cotx=nπ+π2tanx\cot x = n\pi + \frac{\pi}{2} - \tan x

tanx+cotx=(2n+1)π2\tan x + \cot x = \frac{(2n + 1)\pi}{2}sinxcosx+cosxsinx=(2n+1)π2\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{(2n + 1)\pi}{2}

sin2x=2π2=π.sin2x=4(2n+1)π\sin 2x = \frac{2\pi}{|2|} = \pi. \Rightarrow \sin 2x = \frac{4}{(2n + 1)\pi}.