Solveeit Logo

Question

Question: If tan(πcosθ) = cot(πsinθ), then the value of cos(θ-π/4) is (are)...

If tan(πcosθ) = cot(πsinθ), then the value of cos(θ-π/4) is (are)

A

1/2

B

1/2\sqrt { 2 }

C

±122\pm \frac { 1 } { 2 \sqrt { 2 } }

D

None of these

Answer

±122\pm \frac { 1 } { 2 \sqrt { 2 } }

Explanation

Solution

We have tan(πcosθ) = cot(πsinθ) ⇒ tan(πcosθ)

= tan(π/2 - πsinθ)

⇒ π cosθ = (π/2 - πsinθ) + nπ , n ∈ z

⇒ cosθ + sinθ = 12\frac { 1 } { 2 } + n , n ∈ z

12\frac { 1 } { \sqrt { 2 } }cosθ +12\frac { 1 } { \sqrt { 2 } } sinθ = , n ∈ z

⇒ cos(θπ4)\left( \theta - \frac { \pi } { 4 } \right)=, n ∈ z

⇒ cos(θπ4)\left( \theta - \frac { \pi } { 4 } \right)= ± 122\frac { 1 } { 2 \sqrt { 2 } } ( for n =0 and n = -1)