Question
Question: If \(\tan\beta = \cos\theta.\tan\alpha\) then \(\tan^{2}\theta/2\)equal to...
If tanβ=cosθ.tanα then tan2θ/2equal to
A
sin(α+β)sin(α−β)
B
sin(α−β)sin(α+β)
C
cos(α+β)cos(α−β)
D
cos(α+β)/cos(α−β)
Answer
sin(α+β)sin(α−β)
Explanation
Solution
The given relation is tanβtanα=cosθ1
Applying componendo and dividendo rule, then
⇒ tanα+tanβtanα−tanβ=1+cosθ1−cosθ ⇒ sin(α+β)sin(α−β)=2cos22θ2sin22θ
⇒ sin(α+β)sin(α−β)=tan22θ.