Solveeit Logo

Question

Question: If \(\tan\beta = \cos\theta.\tan\alpha\) then \(\tan^{2}\theta/2\)equal to...

If tanβ=cosθ.tanα\tan\beta = \cos\theta.\tan\alpha then tan2θ/2\tan^{2}\theta/2equal to

A

sin(αβ)sin(α+β)\frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)}

B

sin(α+β)sin(αβ)\frac{\sin(\alpha + \beta)}{\sin(\alpha - \beta)}

C

cos(αβ)cos(α+β)\frac{\cos(\alpha - \beta)}{\cos(\alpha + \beta)}

D

cos(α+β)/cos(αβ)\cos(\alpha + \beta)/\cos(\alpha - \beta)

Answer

sin(αβ)sin(α+β)\frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)}

Explanation

Solution

The given relation is tanαtanβ=1cosθ\frac{\tan\alpha}{\tan\beta} = \frac{1}{\cos\theta}

Applying componendo and dividendo rule, then

tanαtanβtanα+tanβ=1cosθ1+cosθ\frac{\tan\alpha - \tan\beta}{\tan\alpha + \tan\beta} = \frac{1 - \cos\theta}{1 + \cos\theta}sin(αβ)sin(α+β)=2sin2θ22cos2θ2\frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)} = \frac{2\sin^{2}\frac{\theta}{2}}{2\cos^{2}\frac{\theta}{2}}

sin(αβ)sin(α+β)=tan2θ2\frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)} = \tan^{2}\frac{\theta}{2}.