Solveeit Logo

Question

Question: If \(\tan\beta = \cos\theta\tan\alpha,\) then \(\tan^{2}\frac{\theta}{2} =\)...

If tanβ=cosθtanα,\tan\beta = \cos\theta\tan\alpha, then tan2θ2=\tan^{2}\frac{\theta}{2} =

A

sin(α+β)sin(αβ)\frac{\sin(\alpha + \beta)}{\sin(\alpha - \beta)}

B

cos(αβ)cos(α+β)\frac{\cos(\alpha - \beta)}{\cos(\alpha + \beta)}

C

sin(αβ)sin(α+β)\frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)}

D

cos(α+β)cos(αβ)\frac{\cos(\alpha + \beta)}{\cos(\alpha - \beta)}

Answer

sin(αβ)sin(α+β)\frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)}

Explanation

Solution

tan2θ2=1cosθ1+cosθ=tanαtanβtanα+tanβ=sin(αβ)sin(α+β)\tan^{2}\frac{\theta}{2} = \frac{1 - \cos\theta}{1 + \cos\theta} = \frac{\tan\alpha - \tan\beta}{\tan\alpha + \tan\beta} = \frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)}.