Question
Question: If \(\tan\alpha = \frac{m}{m + 1}\)and \(\tan\beta = \frac{1}{2m + 1}\), then \(\alpha + \beta =\)...
If tanα=m+1mand tanβ=2m+11, then α+β=
A
3π
B
4π
C
6π
D
None of these
Answer
4π
Explanation
Solution
We have, tanα=m+1m and tanβ=2m+11
We know tan(α+β)=1−tanαtanβtanα+tanβ
=1−(m+1)m(2m+1)1m+1m+2m+11=2m2+m+2m+1−m2m2+m+m+1
=2m2+2m+12m2+2m+1=1⇒tan(α+β)=tan4π
Hence, α+β=4π.
Trick : As α+β is independent of m, therefore put m=1,
then tanα=21 and tanβ=31.
Therefore, tan(α+β)=1−(1/6)(1/2)+(1/3)=1. Hence α+β=4π.
(Also check for other values of m).