Solveeit Logo

Question

Question: If \(\tan\alpha = \frac{1}{7},\mspace{6mu}\tan\beta = \frac{1}{3},\) then \(\cos 2\alpha =\)...

If tanα=17,6mutanβ=13,\tan\alpha = \frac{1}{7},\mspace{6mu}\tan\beta = \frac{1}{3}, then cos2α=\cos 2\alpha =

A

sin2β\sin 2\beta

B

sin4β\sin 4\beta

C

sin3β\sin 3\beta

D

None of these

Answer

sin4β\sin 4\beta

Explanation

Solution

cos2α=1t21+t2=2425\cos 2\alpha = \frac{1 - t^{2}}{1 + t^{2}} = \frac{24}{25}{Here t=tanαt = \tan\alpha}

sin2β=2T1+T2=35cos2β=45\sin 2\beta = \frac{2T}{1 + T^{2}} = \frac{3}{5} \Rightarrow \cos 2\beta = \frac{4}{5}{T=tanβT = \tan\beta}

sin4β=2sin2βcos2β=2.35.45=2425=cos2α\therefore\sin 4\beta = 2\sin 2\beta\cos 2\beta = 2.\frac{3}{5}.\frac{4}{5} = \frac{24}{25} = \cos 2\alpha.