Solveeit Logo

Question

Question: If \(\tan\alpha = \frac{1}{7}\)and \(\sin\beta = \frac{1}{\sqrt{10}}\left( 0 < \alpha,\beta < \frac{...

If tanα=17\tan\alpha = \frac{1}{7}and sinβ=110(0<α,β<π2)\sin\beta = \frac{1}{\sqrt{10}}\left( 0 < \alpha,\beta < \frac{\pi}{2} \right), then 2β2\betais equal to

A

π4α\frac{\pi}{4} - \alpha

B

3π4α\frac{3\pi}{4} - \alpha

C

π8α2\frac{\pi}{8} - \frac{\alpha}{2}

D

3π8α2\frac{3\pi}{8} - \frac{\alpha}{2}

Answer

π4α\frac{\pi}{4} - \alpha

Explanation

Solution

Since sinβ=110tanβ=13\sin\beta = \frac{1}{\sqrt{10}} \Rightarrow \tan\beta = \frac{1}{3}

tan2β=2tanβ1tan2β=34\tan 2\beta = \frac{2\tan\beta}{1 - \tan^{2}\beta} = \frac{3}{4}

tan(α+2β)=17+34117.34=2525=1\therefore\tan(\alpha + 2\beta) = \frac{\frac{1}{7} + \frac{3}{4}}{1 - \frac{1}{7}.\frac{3}{4}} = \frac{25}{25} = 1

Now,0<β<π20 < \beta < \frac{\pi}{2}andtan2β=34>0\tan 2\beta = \frac{3}{4} > 0both⇒ 0<2β<π20 < 2\beta < \frac{\pi}{2}.

Again,0<α<π20 < \alpha < \frac{\pi}{2}and0<2β<π20 < 2\beta < \frac{\pi}{2}both⇒ 0<α+2β<π0 < \alpha + 2\beta < \pi

Thus, 0<α+2β<π0 < \alpha + 2\beta < \piand tan(α+2β)=1\tan(\alpha + 2\beta) = 1both

α+2β=π42β=π4α\alpha + 2\beta = \frac{\pi}{4} \Rightarrow 2\beta = \frac{\pi}{4} - \alpha.