Solveeit Logo

Question

Question: If \(\tan\alpha = \frac{1}{7}\) and \(\sin\beta = \frac{1}{\sqrt{10}}\), then \(\tan(\alpha + 2\beta...

If tanα=17\tan\alpha = \frac{1}{7} and sinβ=110\sin\beta = \frac{1}{\sqrt{10}}, then tan(α+2β\tan(\alpha + 2\beta) is qual to

A

1

B

0

C

12\frac{1}{2}

D

34\frac{3}{4}

Answer

1

Explanation

Solution

tanα=17,sinβ=110\tan\alpha = \frac{1}{7},\sin\beta = \frac{1}{\sqrt{10}}tanβ=13\tan\beta = \frac{1}{3}tan2β\tan 2\beta = 23119=34\frac{\frac{2}{3}}{1 - \frac{1}{9}} = \frac{3}{4}

tan(α+2β)=17+341328=4+2125=1\tan(\alpha + 2\beta) = \frac{\frac{1}{7} + \frac{3}{4}}{1 - \frac{3}{28}} = \frac{4 + 21}{25} = 1