Solveeit Logo

Question

Question: If \(\tan\alpha = (1 + 2^{- x})^{- 1},\) \(\tan\beta = (1 + 2^{x + 1})^{- 1}\), then \(\alpha + \bet...

If tanα=(1+2x)1,\tan\alpha = (1 + 2^{- x})^{- 1}, tanβ=(1+2x+1)1\tan\beta = (1 + 2^{x + 1})^{- 1}, then α+β\alpha + \beta equals

A

π/6\pi/6

B

π/4\pi/4

C

π/3\pi/3

D

π/2\pi/2

Answer

π/4\pi/4

Explanation

Solution

tan(α+β)=tanα+tanβ1tanαtanβ\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta}

tan(α+β)=11+12x+11+2x+1111+1/2x11+2x+1\tan(\alpha + \beta) = \frac{\frac{1}{1 + \frac{1}{2^{x}}} + \frac{1}{1 + 2^{x + 1}}}{1 - \frac{1}{1 + 1/2^{x}}\frac{1}{1 + 2^{x + 1}}}

tan(α+β)=2x+2.2x+x+2x+11+2x+2.2x+2.2x+x2x\tan(\alpha + \beta) = \frac{2^{x} + 2.2^{x + x} + 2^{x} + 1}{1 + 2^{x} + 2.2^{x} + 2.2^{x + x} - 2^{x}}

tan(α+β)=1α+β=π4\tan(\alpha + \beta) = 1 \Rightarrow \alpha + \beta = \frac{\pi}{4}.