Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If tanA=12tanA=\frac{1}{2}, tanB=13tanB=\frac{1}{3}, then tan(2A+B)tan\left(2A+B\right) is equal to

A

11

B

22

C

33

D

44

Answer

33

Explanation

Solution

Given, tanA=12,tanB=13(i)tanA=\frac{1}{2}, tanB=\frac{1}{3}\quad\ldots\left(i\right) Now, tan(2A+B)=tan2A+tanB1tan2AtanBtan\left(2A+B\right)=\frac{tan\,2A+tan\,B}{1-tan\,2A\,tan\,B} =2tanA1tan2A+tanB12tanA1tan2A×tanB=\frac{\frac{2\,tan\,A}{1-tan^{2}\,A}+tan\,B}{1-\frac{2\,tan\,A}{1-tan^{2}\,A}\times tan\,B} =43+13143×13=3=\frac{\frac{4}{3}+\frac{1}{3}}{1-\frac{4}{3}\times\frac{1}{3}}=3