Question
Question: If \(\tan^{2}\alpha\tan^{2}\beta + \tan^{2}\beta\tan^{2}\gamma + \tan^{2}\gamma\tan^{2}\alpha\) \(+...
If tan2αtan2β+tan2βtan2γ+tan2γtan2α
+2tan2αtan2βtan2γ=1, then the value of
sin2α+sin2β+sin2γis
A
0
B
– 1
C
1
D
None of these
Answer
1
Explanation
Solution
sin2α+sin2β+sin2γ
=1+tan2αtan2α+1+tan2βtan2β+1+tan2γtan2γ
=1+xx+1+yy+1+zz (x=tan2α,y=tan2β,z=tan2γ)
=(1+x)(1+y)(1+z)(x+y+z)+(xy+yz+zx+2xyz)+xy+yz+zx+xyz
=(1+x)(1+y)(1+z)1+x+y+z+xy+yz+zx+xyz=1
(∵xy+yz+zx+2xyz=1)