Solveeit Logo

Question

Question: If \(\tan^{2}\alpha\tan^{2}\beta + \tan^{2}\beta\tan^{2}\gamma + \tan^{2}\gamma\tan^{2}\alpha\) \(+...

If tan2αtan2β+tan2βtan2γ+tan2γtan2α\tan^{2}\alpha\tan^{2}\beta + \tan^{2}\beta\tan^{2}\gamma + \tan^{2}\gamma\tan^{2}\alpha

+2tan2αtan2βtan2γ=1,+ 2\tan^{2}\alpha\tan^{2}\beta\tan^{2}\gamma = 1, then the value of

sin2α+sin2β+sin2γ\sin^{2}\alpha + \sin^{2}\beta + \sin^{2}\gammais

A

0

B

– 1

C

1

D

None of these

Answer

1

Explanation

Solution

sin2α+sin2β+sin2γ\sin^{2}\alpha + \sin^{2}\beta + \sin^{2}\gamma

=tan2α1+tan2α+tan2β1+tan2β+tan2γ1+tan2γ= \frac{\tan^{2}\alpha}{1 + \tan^{2}\alpha} + \frac{\tan^{2}\beta}{1 + \tan^{2}\beta} + \frac{\tan^{2}\gamma}{1 + \tan^{2}\gamma}

=x1+x+y1+y+z1+z= \frac{x}{1 + x} + \frac{y}{1 + y} + \frac{z}{1 + z} (x=tan2α,y=tan2β,z=tan2γ)(x = \tan^{2}\alpha,y = \tan^{2}\beta,z = \tan^{2}\gamma)

=(x+y+z)+(xy+yz+zx+2xyz)+xy+yz+zx+xyz(1+x)(1+y)(1+z)= \frac{(x + y + z) + (xy + yz + zx + 2xyz) + xy + yz + zx + xyz}{(1 + x)(1 + y)(1 + z)}

=1+x+y+z+xy+yz+zx+xyz(1+x)(1+y)(1+z)=1= \frac{1 + x + y + z + xy + yz + zx + xyz}{(1 + x)(1 + y)(1 + z)} = 1

(xy+yz+zx+2xyz=1)(\because xy + yz + zx + 2xyz = 1)