Solveeit Logo

Question

Mathematics Question on Differentiability

If tan y=sinx+cosxcosxsinxy=\frac{sin\,x+cos\,x}{cos\,x-sin\,x} , then dydx=\frac{dy}{dx}=

A

11

B

cosxcosx

C

sinxsinx

D

1-1

Answer

11

Explanation

Solution

We have, tany=sinx+cosxcosxsinxtan\,y = \frac{sin\,x + cos\,x}{cos\,x - sin\,x}
=1+tanx1tanx=tan(π4+x)= \frac {1 + tan\,x}{1-tan\,x} = tan(\frac{\pi}{4} + x)
y=tan1(tan(π4+x))\Rightarrow y = tan^{-1} (tan(\frac{\pi}{4} + x))
=π4+x= \frac {\pi}{4} + x
Differentiating w.r.t. xx, we get
dydx=1\frac{dy}{dx} = 1