Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

If tan(x+y)=33\tan(x + y) = 33 and x=tan13,x = \tan^{-1} \, 3, then yy is

A

310\frac{3}{10}

B

3310\frac{33}{10}

C

13\frac{1}{3}

D

tan1310\tan^{-1} \frac{3}{10}

Answer

tan1310\tan^{-1} \frac{3}{10}

Explanation

Solution

We have, tan(x+y)=33\tan(x + y) = 33
tanx+tanytanxtany=33\Rightarrow \:\: \frac{\tan \, x + \tan \, y}{- \tan \, x \, \tan \, y} = 33
3+tany13tany=33(x=tan13tanx=3)\Rightarrow \:\: \frac{3 + \tan \, y}{1 - 3 \, \tan \, y} = 33 \:\:\:\: (\because \, x = \tan^{-1} 3 \: \Rightarrow \tan \, x = 3)
3+tany=3399tany\Rightarrow \:\: 3 + \tan \, y = 33 - 99 \, \tan \, y
100tany=30\Rightarrow \:\: 100 \, \tan \, y = 30
tany=310y=tan1310\Rightarrow \:\: \tan \, y = \frac{3}{10} \: \Rightarrow \: y = \tan^{-1} \frac{3}{10}