Solveeit Logo

Question

Question: If \(\tan x = \frac{b}{a}\), then \(\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}}\) equal ...

If tanx=ba\tan x = \frac{b}{a}, then a+bab+aba+b\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}} equal to

A

2sinxsin2x\frac{2\sin x}{\sqrt{\sin 2x}}

B

2cosxcos2x\frac{2\cos x}{\sqrt{\cos 2x}}

C

2cosxsin2x\frac{2\cos x}{\sqrt{\sin 2x}}

D

2sinxcos2x\frac{2\sin x}{\sqrt{\cos 2x}}

Answer

2cosxcos2x\frac{2\cos x}{\sqrt{\cos 2x}}

Explanation

Solution

Given tanx=ba\tan x = \frac{b}{a}

a+bab+aba+b=1+b/a1b/a+1b/a1+b/a\sqrt{\frac{a + b}{a - b}} + \sqrt{\frac{a - b}{a + b}} = \sqrt{\frac{1 + b/a}{1 - b/a}} + \sqrt{\frac{1 - b/a}{1 + b/a}}

= 1+tanx1tanx+1tanx1+tanx=\sqrt{\frac{1 + \tan x}{1 - \tan x}} + \sqrt{\frac{1 - \tan x}{1 + \tan x}} = 21tan2x\frac{2}{\sqrt{1 - \tan^{2}x}}

Now, multiplying by 1+tan2x\sqrt{1 + \tan^{2}x} in N'r and D'r

= 21tan2x1+tan2x.1+tan2x=2cos2x.sec2x\frac{2}{\frac{\sqrt{1 - \tan^{2}x}}{\sqrt{1 + \tan^{2}x}}.\sqrt{1 + \tan^{2}x}} = \frac{2}{\sqrt{\cos 2x}.\sqrt{\sec^{2}x}}= 2cosxcos2x\frac{2\cos x}{\sqrt{\cos 2x}}.