Solveeit Logo

Question

Question: If \[\tan (x) = \dfrac{5}{{12}}\] in the third quadrant then find other trigonometric ratios?...

If tan(x)=512\tan (x) = \dfrac{5}{{12}} in the third quadrant then find other trigonometric ratios?

Explanation

Solution

Hint : Here in this question, we have to find the value of all six trigonometric ratios i.e., sin, cos, sec, cosec and cot using a given value of tan ratio. This can be solved by using a definition of trigonometric ratios, trigonometric identities and by applying a ASTC rule of trigonometry we get the required values of all six trigonometric ratios.

Complete step-by-step answer :
Trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
There are six trigonometric ratios, sine, cosine, tangent, cosecant, secant and cotangent which can be abbreviated as sin, cos, tan, cosec, sec and cot.
Consider the given question:
tan(x)=512\Rightarrow \tan (x) = \dfrac{5}{{12}} ----------(1)
given that the angle xx lies in the third quadrant.
In the third quadrant, tanx\tan x and cotx\cot x are positive and all other ratios are negative.

By the definition of trigonometry, Cotangent is a reciprocal of tangent ratio i.e.,
cotx=1tanx\Rightarrow \cot x = \dfrac{1}{{\tan x}}
Substitute the value of tan(x)\tan \left( x \right) from equation (1), then
cot(x)=1(512)\Rightarrow \cot \left( x \right) = \dfrac{1}{{\left( {\dfrac{5}{{12}}} \right)}}
cot(x)=125\Rightarrow \cot \left( x \right) = \dfrac{{12}}{5} -------(2)
Now consider, the trigonometric identity cosec2x=1+cot2xcose{c^2}x = 1 + {\cot ^2}x , then
cosec(x)=1+cot2x\Rightarrow cosec(x) = \sqrt {1 + co{t^2}x}
Substitute the value of cot(x)cot\left( x \right) from equation (2), then
cosec(x)=1+(125)2\Rightarrow cosec(x) = \sqrt {1 + {{\left( {\dfrac{{12}}{5}} \right)}^2}}
cosec(x)=1+14425\Rightarrow cosec(x) = \sqrt {1 + \dfrac{{144}}{{25}}}
Take 25 as LCM in RHS , then
cosec(x)=25+14425\Rightarrow cosec(x) = \sqrt {\dfrac{{25 + 144}}{{25}}}
cosec(x)=16925\Rightarrow cosec(x) = \sqrt {\dfrac{{169}}{{25}}}
As we know 169 is a square number of 13 i.e., 169=132169 = {13^2} and 25 is a square number of 5 i.e., 25=5225 = {5^2} , then we have
cosec(x)=13252\Rightarrow cosec(x) = \sqrt {\dfrac{{{{13}^2}}}{{{5^2}}}}
cosec(x)=(135)2\Rightarrow cosec(x) = \sqrt {{{\left( {\dfrac{{13}}{5}} \right)}^2}}
In third quadrant cosecant are negative, then
cosec(x)=135\Rightarrow cosec(x) = - \dfrac{{13}}{5} -------(3)
By the definition, trigonometric ratio sine is a reciprocal of cosecant i.e., sinx=1cosec(x)\sin x = \dfrac{1}{{cosec(x)}}
substitute value of cosec(x)cosec\left( x \right) from equation (3), then
sin(x)=1(135)\Rightarrow \sin \left( x \right) = \dfrac{1}{{\left( { - \dfrac{{13}}{5}} \right)}}
sin(x)=513\Rightarrow \sin \left( x \right) = - \dfrac{5}{{13}} -------(4)
Now consider, the trigonometric identity cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1 , then
cos(x)=1sin2x\Rightarrow \cos (x) = \sqrt {1 - {{\sin }^2}x}
Substitute the value sin(x)\sin \left( x \right) from equation (4), then
cos(x)=1(513)2\Rightarrow \cos (x) = \sqrt {1 - {{\left( { - \dfrac{5}{{13}}} \right)}^2}}
cos(x)=125169\Rightarrow \cos (x) = \sqrt {1 - \dfrac{{25}}{{169}}}
Take 169 as LCM in RHS, then
cos(x)=16925169\Rightarrow \cos (x) = \sqrt {\dfrac{{169 - 25}}{{169}}}
cos(x)=144169\Rightarrow \cos (x) = \sqrt {\dfrac{{144}}{{169}}}
As we know 169 is a square number of 13 i.e., 169=132169 = {13^2} and 25 is a square number of 5 i.e., 144=122144 = {12^2} , then we have
cos(x)=122132\Rightarrow cos(x) = \sqrt {\dfrac{{{{12}^2}}}{{{{13}^2}}}}
cos(x)=(1213)2\Rightarrow cos(x) = \sqrt {{{\left( {\dfrac{{12}}{{13}}} \right)}^2}}
In third quadrant cosine are negative, then
cos(x)=1213\Rightarrow cos(x) = - \dfrac{{12}}{{13}} -------(5)
By the definition, trigonometric ratio secant is a reciprocal of cosine i.e., sec(x)=1cos(x)\sec \left( x \right) = \dfrac{1}{{cos(x)}}
substitute value of cos(x)cos\left( x \right) from equation (5), then
sec(x)=1(1213)\Rightarrow \sec \left( x \right) = \dfrac{1}{{\left( { - \dfrac{{12}}{{13}}} \right)}}
sec(x)=1312\Rightarrow \sec \left( x \right) = - \dfrac{{13}}{{12}} -------(6)
Therefore, the values of all six trigonometric ratios are
sin(x)=513\sin \left( x \right) = - \dfrac{5}{{13}} , cos(x)=1213cos(x) = - \dfrac{{12}}{{13}} , tan(x)=512\tan (x) = \dfrac{5}{{12}} , sec(x)=1312\sec \left( x \right) = - \dfrac{{13}}{{12}} , cosec(x)=135cosec(x) = - \dfrac{{13}}{5} and cot(x)=125\cot \left( x \right) = \dfrac{{12}}{5} .

Note : ASTC rule says all trigonometric functions are positive in the first quadrant (sin, cos, tan and its reciprocals). sin and cos functions are positive in the second quadrant, all other function sides are negative. tan and cot functions are positive in the third quadrant and all other functions are negative. Finally in fourth quadrant cos and sec functions are positive and all other functions are negative.