Solveeit Logo

Question

Question: If \(\tan x=\dfrac{3}{4}\) , x lies in the third quadrant, find the values of \(\sin \dfrac{x}{2},\t...

If tanx=34\tan x=\dfrac{3}{4} , x lies in the third quadrant, find the values of sinx2, cosx2 and tanx2\sin \dfrac{x}{2},\text{ cos}\dfrac{x}{2}\text{ and }\tan \dfrac{x}{2} .

Explanation

Solution

Hint: Start by using the formula that tan2A=2tanA1tan2A\tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A} , which would give you a quadratic equation in terms of tanx2\tan \dfrac{x}{2} . Now once you have got the value of tanx2\tan \dfrac{x}{2} from the quadratic equation, you can easily find other trigonometric ratios using the relation between the trigonometric ratios.

Complete step-by-step answer:

We will start with the solution to the above question by finding the value of tanx2\tan \dfrac{x}{2} .
We know that tan2A=2tanA1tan2A\tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A} . So, if we use the formula for tanx, we get
tanx=2tanx21tan2x2\tan x=\dfrac{2\tan \dfrac{x}{2}}{1-{{\tan }^{2}}\dfrac{x}{2}}
Now we will put the value of tanx from the question. On doing so, we get
34=2tanx21tan2x2\dfrac{3}{4}=\dfrac{2\tan \dfrac{x}{2}}{1-{{\tan }^{2}}\dfrac{x}{2}}
33tan2x2=8tanx2\Rightarrow 3-3{{\tan }^{2}}\dfrac{x}{2}=8\tan \dfrac{x}{2}
3tan2x2+8tanx23=0\Rightarrow 3{{\tan }^{2}}\dfrac{x}{2}+8\tan \dfrac{x}{2}-3=0
3tan2x2+9tanx2tanx23=0\Rightarrow 3{{\tan }^{2}}\dfrac{x}{2}+9\tan \dfrac{x}{2}-\tan \dfrac{x}{2}-3=0
3tanx2(tanx2+3)1(tanx2+3)=0\Rightarrow 3\tan \dfrac{x}{2}\left( \tan \dfrac{x}{2}+3 \right)-1\left( \tan \dfrac{x}{2}+3 \right)=0
(3tanx21)(tanx2+3)=0\Rightarrow \left( 3\tan \dfrac{x}{2}-1 \right)\left( \tan \dfrac{x}{2}+3 \right)=0
Therefore, tanx2=13 or -3\tan \dfrac{x}{2}=\dfrac{1}{3}\text{ or -3} .
It is given that x lies in the third quadrant. Then we can say that x2\dfrac{x}{2} will for sure lie in the second quadrant and tangent is negative in the second quadrant, so the value of tanx2=3\tan \dfrac{x}{2}=-3 .
We know that sec2x2=1+tan2x2.{{\sec }^{2}}\dfrac{x}{2}=1+{{\tan }^{2}}\dfrac{x}{2}. So, if we put the value of tanx2\tan \dfrac{x}{2} in the formula, we get
sec2x=1+(3)2se{{c}^{2}}x=1+{{\left( -3 \right)}^{2}}
sec2x=1+9\Rightarrow se{{c}^{2}}x=1+9
sec2x=10\Rightarrow {{\sec }^{2}}x=10
Now we know that a2=b{{a}^{2}}=b implies a=±ba=\pm \sqrt{b} . So, our equation becomes:
secx=±10\Rightarrow \sec x=\pm \sqrt{10}
Now, as we know that x2\dfrac{x}{2} lies in the second quadrant and secx2\sec \dfrac{x}{2} is negative in the second quadrant.
secx2=10\therefore \sec \dfrac{x}{2}=-\sqrt{10}
Now we know that cosx is inverse of secx.
cosx2=1secx2=110\therefore \cos \dfrac{x}{2}=\dfrac{1}{\sec \dfrac{x}{2}}=-\dfrac{1}{\sqrt{10}}
Now using the property that tanx is the ratio of sinx to cosx, we get
tanx2=sinx2cosx2\tan \dfrac{x}{2}=\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}
tanx2cosx2=sinx2\Rightarrow \tan \dfrac{x}{2}\cos \dfrac{x}{2}=\sin \dfrac{x}{2}
sinx2=3×(110)=310\Rightarrow \sin \dfrac{x}{2}=-3\times \left( -\dfrac{1}{\sqrt{10}} \right)=\dfrac{3}{\sqrt{10}}

Note: It is useful to remember the graph of the trigonometric ratios along with the signs of their values in different quadrants. For example: sine is always positive in the first and the second quadrant while negative in the other two. Also, you need to remember the properties related to complementary angles and trigonometric ratios. As you saw in the above solution, we had used the result that x2\dfrac{x}{2} will for sure lie in the second quadrant. We arrived at this result as follows:
As we knew that xx lies in the second quadrant, we can say:
πx3π2\pi \le x\le \dfrac{3\pi }{2}
Now if we divide each term in the inequality by 2, we get
π2x23π4\dfrac{\pi }{2}\le \dfrac{x}{2}\le \dfrac{3\pi }{4}
Using this result we can say that x2\dfrac{x}{2} lies in the second quadrant.
.