Solveeit Logo

Question

Question: If \(\tan x=3\cot x\) find the value of x in radian....

If tanx=3cotx\tan x=3\cot x find the value of x in radian.

Explanation

Solution

Hint: Put cot x as 1tanx\dfrac{1}{\tan x} using the equation cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta } . Now, proceed further to get the value of tan x and hence, use the result:-
Value of tan60\tan {{60}^{\circ }} is 3\sqrt{3} and value of tan120\tan {{120}^{\circ }} is 3-\sqrt{3{}^\circ } use the following equation to get the angle (x) in radian form as:
π radian=180\pi \text{ radian}=180{}^\circ or
1=π1801{}^\circ =\dfrac{\pi }{180{}^\circ } radian

Complete step-by-step answer:
The equation in the problem is tanx=3cotx\tan x=3\cot x ………………………………. (1)
Hence, we need to find the value of x in radian from the above equation.
Now, as we know the relation between tanθ\tan \theta and cotθ\cot \theta is given as:
cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta } …………………………. (2)
So, we can replace cot x from the equation (1) with the help of above equation and can rewrite the equation (1) as:
tanx=3×1tanx\tan x=3\times \dfrac{1}{\tan x} or
tanx=3tanx\tan x=\dfrac{3}{\tan x}
On cross-multiplying the above equation, we get tan2x=3{{\tan }^{2}}x=3
On taking square root to both the sides of the above equation, we get:
tanx=±3\tan x=\pm \sqrt{3} ………………………… (3)
Case 1: tanx=3\tan x=\sqrt{3}
Now, as we know value 3\sqrt{3} can be given by tan function at angle 60{{60}^{\circ }} . Hence, we get value of x in degree as:
x=60x={{60}^{\circ }} ………………………………. (4)
Case 2: tanx=3\tan x=-\sqrt{3}
As we know the relation:
tan(180θ)=tanθ\tan \left( {{180}^{\circ }}-\theta \right)=-\tan \theta ……………………… (5)
And we also know that tan60=3\tan {{60}^{\circ }}=\sqrt{3} .
So, on putting θ=60\theta ={{60}^{\circ }} to the equation (5), we get:
tan(18060)=tan60\tan \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=-\tan {{60}^{\circ }}
tan120=3\tan {{120}^{\circ }}=-\sqrt{3}………………….. (6)
Hence, we can write the relation tanx=3\tan x=-\sqrt{3} using above result as:
tanx=tan120\tan x=\tan {{120}^{\circ }}
Or x=120x={{120}^{\circ }} ………………………. (7)
So, we get values of x as:
x=60x={{60}^{\circ }} and 120{{120}^{\circ }}
Now, as we know the relation between degree radian as:
π radian =180\pi \text{ radian }={{180}^{\circ }} or
180=π radian {{180}^{\circ }}=\pi \text{ radian }
So, we get:
1=π180radian1{}^\circ =\dfrac{\pi }{180{}^\circ }\text{radian} ………………………..(8)
So, x=60x={{60}^{\circ }} in radian form is given as:
x=π180×60=π3x=\dfrac{\pi }{180}\times 60=\dfrac{\pi }{3} or
x=π3x=\dfrac{\pi }{3}
Similarly, x=120x=120{}^\circ in radian form is given as:
x=π180×120=2π3 x=2π3 \begin{aligned} & x=\dfrac{\pi }{180}\times 120=\dfrac{2\pi }{3} \\\ & x=\dfrac{2\pi }{3} \\\ \end{aligned}
Hence, values of x in radian form are given as:
x=π3,2π3x=\dfrac{\pi }{3},\dfrac{2\pi }{3}

Note: Another approach for the given problem would be that we can write tan x as sinxcosx\dfrac{\sin x}{\cos x} and cot x as cosxsinx\dfrac{\cos x}{\sin x} . so, we get –
sinxcosx=3cosxsinx\dfrac{\sin x}{\cos x}=3\dfrac{\cos x}{\sin x}
sin2x3cos2x=0{{\sin }^{2}}x-3{{\cos }^{2}}x=0
Now, use sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 to solve the problem further.
We know tanx=3\tan x=\sqrt{3} and tanx=3\tan x=-\sqrt{3} have infinite solutions and they can be given by the relation.
If, tanx=tany\tan x=\tan y then x=nπ+yx=n\pi +y .
Where, nzn\in z
So, all the solutions of tanx=3\tan x=\sqrt{3} is given as:
x=nπ+π3,nzx=n\pi +\dfrac{\pi }{3},n\in z and for tanx=3\tan x=\sqrt{3} , we have:
xnπ+2π3,nzx-n\pi +\dfrac{2\pi }{3},n\in z
So, we can respect x in the form of a general solution as well.