Solveeit Logo

Question

Question: If \[\tan \theta + \tan \left( {{{60}^ \circ } + \theta } \right) + \tan \left( {{{120}^ \circ } + \...

If tanθ+tan(60+θ)+tan(120+θ)=3\tan \theta + \tan \left( {{{60}^ \circ } + \theta } \right) + \tan \left( {{{120}^ \circ } + \theta } \right) = 3, then θ=\theta =
A) nπ3+π12\dfrac{{n\pi }}{3} + \dfrac{\pi }{{12}}
B) nπ+π4n\pi + \dfrac{\pi }{4}
C) 2nπ2n\pi
D) nπn\pi

Explanation

Solution

We will first use the formula for tan (x + y) and then put in the general known values of tangent of some common angles. After that, we will just perform normal calculations and comparison and thus get the answer.

Complete step-by-step solution:
Let us first note down the formula which we will require in the solution of this question.
We have the formula as follows:-
tan(x+y)=tanx+tany1tanx.tany\Rightarrow \tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x.\tan y}}
Therefore taking the parts of questions: tan(60+θ)\tan \left( {{{60}^ \circ } + \theta } \right) and tan(120+θ)\tan \left( {{{120}^ \circ } + \theta } \right). Then, we will get:-
tan(60+θ)=tan60+tanθ1tan60.tanθ\Rightarrow \tan \left( {{{60}^ \circ } + \theta } \right) = \dfrac{{\tan {{60}^ \circ } + \tan \theta }}{{1 - \tan {{60}^ \circ }.\tan \theta }}
We already know that tan60=3\tan {60^ \circ } = \sqrt 3 . So, on putting this in above expression, we will get:-
tan(60+θ)=3+tanθ13tanθ\Rightarrow \tan \left( {{{60}^ \circ } + \theta } \right) = \dfrac{{\sqrt 3 + \tan \theta }}{{1 - \sqrt 3 \tan \theta }} ………..……..(1)
Similarly, we will have:-
tan(120+θ)=tan120+tanθ1tan120.tanθ\Rightarrow \tan \left( {{{120}^ \circ } + \theta } \right) = \dfrac{{\tan {{120}^ \circ } + \tan \theta }}{{1 - \tan {{120}^ \circ }.\tan \theta }}
We already know that tan120=tan(90+30)=cot30=3\tan {120^ \circ } = \tan \left( {{{90}^ \circ } + {{30}^ \circ }} \right) = - \cot {30^ \circ } = - \sqrt 3 .
So, on putting this in above expression, we will get:-
tan(120+θ)=3+tanθ1+3tanθ\Rightarrow \tan \left( {{{120}^ \circ } + \theta } \right) = \dfrac{{ - \sqrt 3 + \tan \theta }}{{1 + \sqrt 3 \tan \theta }} ………………….(2)
Now, we will put in the equations (1) and (2) in the LHS of the given equation which is tanθ+tan(60+θ)+tan(120+θ)=3\tan \theta + \tan \left( {{{60}^ \circ } + \theta } \right) + \tan \left( {{{120}^ \circ } + \theta } \right) = 3. We will then obtain the following expression:-
LHS: tanθ+tan(60+θ)+tan(120+θ)\tan \theta + \tan \left( {{{60}^ \circ } + \theta } \right) + \tan \left( {{{120}^ \circ } + \theta } \right)
tanθ+3+tanθ13tanθ+3+tanθ1+3tanθ\Rightarrow \tan \theta + \dfrac{{\sqrt 3 + \tan \theta }}{{1 - \sqrt 3 \tan \theta }} + \dfrac{{ - \sqrt 3 + \tan \theta }}{{1 + \sqrt 3 \tan \theta }} (Using the equations (1) and (2))
Taking LCM to simplify it a bit, we will get:-
tanθ+(3+tanθ)(1+3tanθ)+(3+tanθ)(13tanθ)(13tanθ)(1+3tanθ)\Rightarrow \tan \theta + \dfrac{{\left( {\sqrt 3 + \tan \theta } \right)\left( {1 + \sqrt 3 \tan \theta } \right) + \left( { - \sqrt 3 + \tan \theta } \right)\left( {1 - \sqrt 3 \tan \theta } \right)}}{{\left( {1 - \sqrt 3 \tan \theta } \right)\left( {1 + \sqrt 3 \tan \theta } \right)}}
Simplifying the numerator to get the following expression:-
tanθ+3+3tanθ+tanθ+3tan2θ3+3tanθ+tanθ3tan2θ(13tanθ)(1+3tanθ)\Rightarrow \tan \theta + \dfrac{{\sqrt 3 + 3\tan \theta + \tan \theta + \sqrt 3 {{\tan }^2}\theta - \sqrt 3 + 3\tan \theta + \tan \theta - \sqrt 3 {{\tan }^2}\theta }}{{\left( {1 - \sqrt 3 \tan \theta } \right)\left( {1 + \sqrt 3 \tan \theta } \right)}}
Simplifying by combining the like terms in the numerator to get:-
tanθ+8tanθ(13tanθ)(1+3tanθ)\Rightarrow \tan \theta + \dfrac{{8\tan \theta }}{{\left( {1 - \sqrt 3 \tan \theta } \right)\left( {1 + \sqrt 3 \tan \theta } \right)}}
Now, we know that we have an identity given by (a+b)(ab)=a2b2(a + b)(a - b) = {a^2} - {b^2}. Using this in the above expression, we will then obtain the following equation:-
tanθ+8tanθ13tan2θ\Rightarrow \tan \theta + \dfrac{{8\tan \theta }}{{1 - 3{{\tan }^2}\theta }}
Now taking the LCM to combine these, we will get:-
tanθ(13tan2θ)+8tanθ13tan2θ\Rightarrow \dfrac{{\tan \theta \left( {1 - 3{{\tan }^2}\theta } \right) + 8\tan \theta }}{{1 - 3{{\tan }^2}\theta }}
Simplifying the numerator to get:-
tanθ3tan3θ+8tanθ13tan2θ\Rightarrow \dfrac{{\tan \theta - 3{{\tan }^3}\theta + 8\tan \theta }}{{1 - 3{{\tan }^2}\theta }}
Simplifying the numerator further to get:-
9tanθ3tan3θ13tan2θ\Rightarrow \dfrac{{9\tan \theta - 3{{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}
We can write this as:-
3(3tanθtan3θ13tan2θ)\Rightarrow 3\left( {\dfrac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }}} \right)
Now, we know that: tan3x=3tanxtan3x13tan2x\tan 3x = \dfrac{{3\tan x - {{\tan }^3}x}}{{1 - 3{{\tan }^2}x}}
So, we get the LHS as:-
LHS=3tan3θ\therefore LHS = 3\tan 3\theta
Now, we will put this equal to RHS which is given to be 3.
3tan3θ=3\therefore 3\tan 3\theta = 3
tan3θ=1\Rightarrow \tan 3\theta = 1
θ=nπ3+π12\Rightarrow \theta = \dfrac{{n\pi }}{3} + \dfrac{\pi }{{12}}

\therefore The correct option is (A).

Note: The students must commit to memory the following formulas:
tan(x+y)=tanx+tany1tanx.tany\Rightarrow \tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x.\tan y}}
tan3x=3tanxtan3x13tan2x\Rightarrow \tan 3x = \dfrac{{3\tan x - {{\tan }^3}x}}{{1 - 3{{\tan }^2}x}}
The students must also know that if they just take the answer as π12\dfrac{\pi }{{12}} that will be the principal solution. Here, it is not mentioned that we need to find a principal solution, therefore, looking at the options we went for general solutions.