Solveeit Logo

Question

Question: If $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta$ then the ge...

If

tanθ+tan2θ+tan3θ=tanθtan2θtan3θ\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta

then the general value of θ\theta is

A

n\pi

B

\frac{n\pi}{6} (where n is even)

C

n\pi \pm \frac{\pi}{3}

D

\frac{n\pi}{2}

Answer

\frac{n\pi}{6} (where n is even)

Explanation

Solution

The given equation is tanθ+tan2θ+tan3θ=tanθtan2θtan3θ\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta. This equation is of the form tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A \tan B \tan C, where A=θA=\theta, B=2θB=2\theta, and C=3θC=3\theta. This identity holds if A+B+C=nπA+B+C = n\pi for some integer nn, provided that tanA,tanB,tanC\tan A, \tan B, \tan C are defined. So, θ+2θ+3θ=nπ\theta + 2\theta + 3\theta = n\pi, which simplifies to 6θ=nπ6\theta = n\pi. Thus, θ=nπ6\theta = \frac{n\pi}{6}.

We need to ensure that tanθ\tan\theta, tan2θ\tan 2\theta, and tan3θ\tan 3\theta are defined. tanx\tan x is undefined when x=kπ+π2x = k\pi + \frac{\pi}{2} for some integer kk.

  1. tanθ\tan\theta is undefined if θ=kπ+π2\theta = k\pi + \frac{\pi}{2}. nπ6=kπ+π2    n=6k+3\frac{n\pi}{6} = k\pi + \frac{\pi}{2} \implies n = 6k + 3. This means nn must be odd.

  2. tan2θ\tan 2\theta is undefined if 2θ=kπ+π22\theta = k\pi + \frac{\pi}{2}. 2(nπ6)=kπ+π2    nπ3=kπ+π2    n=3k+322\left(\frac{n\pi}{6}\right) = k\pi + \frac{\pi}{2} \implies \frac{n\pi}{3} = k\pi + \frac{\pi}{2} \implies n = 3k + \frac{3}{2}. This is not possible for integer nn.

  3. tan3θ\tan 3\theta is undefined if 3θ=kπ+π23\theta = k\pi + \frac{\pi}{2}. 3(nπ6)=kπ+π2    nπ2=kπ+π2    n=2k+13\left(\frac{n\pi}{6}\right) = k\pi + \frac{\pi}{2} \implies \frac{n\pi}{2} = k\pi + \frac{\pi}{2} \implies n = 2k + 1. This means nn must be odd.

For θ=nπ6\theta = \frac{n\pi}{6} to be a valid solution, nn must not be odd. Therefore, nn must be an even integer. Let n=2mn = 2m for some integer mm. Then θ=2mπ6=mπ3\theta = \frac{2m\pi}{6} = \frac{m\pi}{3}. This corresponds to the option nπ6\frac{n\pi}{6} where nn is even.