Solveeit Logo

Question

Question: If \( \tan \theta +\tan 2\theta +\sqrt{3}\tan \theta \tan 2\theta =\sqrt{3} \) , then \[\] A. \( \...

If tanθ+tan2θ+3tanθtan2θ=3\tan \theta +\tan 2\theta +\sqrt{3}\tan \theta \tan 2\theta =\sqrt{3} , then A. $ \theta =\left( 6n+1 \right)\dfrac{\pi }{18},\forall n\in I $
B. θ=(6n+1)π9,nI\theta =\left( 6n+1 \right)\dfrac{\pi }{9},\forall n\in I C. $ \theta =\left( 3n+1 \right)\dfrac{\pi }{9},\forall n\in I $
D. θ=(6n+1)π18,nI\theta =\left( 6n+1 \right)\dfrac{\pi }{18},\forall n\in I $$$$

Explanation

Solution

We take 3tanθtan2θ\sqrt{3}\tan \theta \tan 2\theta to the right hand side, take 3\sqrt{3} common and divide both sides by 1tanθtan2θ1-\tan \theta \tan 2\theta . We express the obtained expression at the left hand side in the form of tan(A+B)\tan \left( A+B \right) suing the formula tanA+tanB1tanAtanB=tan(A+B)\dfrac{\tan A+\tan B}{1-\tan A\cdot \tan B}=\tan \left( A+B \right) . We find the solutions of the equation in tangent tanx=tanα\tan x=\tan \alpha as x=nπ+αx=n\pi +\alpha .

Complete step-by-step answer:
We know from tangent sum of the angles formula that for any two angles with measures AA and BB we have
tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\cdot \tan B}
We can also find the value of tan60\tan {{60}^{\circ }} by converting it to the ratio of sine and cosine. We have
tan60=sin60cos60=3212=3\tan {{60}^{\circ }}=\dfrac{\sin {{60}^{\circ }}}{\cos {{60}^{\circ }}}=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}}=\sqrt{3}
We convert 60{{60}^{\circ }} into radian and have

& {{60}^{\circ }}=\dfrac{{{60}^{\circ }}}{{{180}^{\circ }}}\times \pi =\dfrac{\pi }{3} \\\ & \Rightarrow \tan \left( \dfrac{\pi }{3} \right)=\tan \left( {{60}^{\circ }} \right)=\sqrt{3} \\\ \end{aligned}$$ We also know that the solutions of the equation $ \tan x=\tan \alpha $ (where $ x $ is the unknown variable and $ \alpha $ is measure of angle) are given by $$x=n\pi +\alpha $$ Here $ n $ is any integer , so we have $ n\in I $ . We are given the question a trigonometric equation in tangent of any acute angle $ \theta $ as $$\tan \theta +\tan 2\theta +\sqrt{3}\tan \theta \tan 2\theta =\sqrt{3}$$ Let us collect the terms having $ \sqrt{3} $ at the right hand side of the equation. We have $$\Rightarrow \tan \theta +\tan 2\theta =\sqrt{3}-\sqrt{3}\tan \theta \tan 2\theta $$ We take $ \sqrt{3} $ common in the right hand side of the equation and have $$\Rightarrow \tan \theta +\tan 2\theta =\sqrt{3}\left( 1-\tan \theta \tan 2\theta \right)$$ Let us divide both side of the above equation by $$1-\tan \theta \tan 2\theta $$ and have, $$\Rightarrow \dfrac{\tan \theta +\tan 2\theta }{1-\tan \theta \tan 2\theta }=\sqrt{3}$$ We observe that the expression in tangent of angles in the left hand side is in the form tangent sum of two angles $ \tan \left( A+B \right) $ where $ A=\theta ,B=2\theta $ . We use the formula and proceed to have $$\begin{aligned} & \Rightarrow \tan \left( \theta +2\theta \right)=\sqrt{3} \\\ & \Rightarrow \tan \left( 3\theta \right)=\sqrt{3} \\\ \end{aligned}$$ We know that $ \tan \left( \dfrac{\pi }{3} \right)=\sqrt{3} $ . We put $ \tan \left( \dfrac{\pi }{3} \right) $ in place of $ \sqrt{3} $ and have, $$\Rightarrow \tan \left( 3\theta \right)=\tan \left( \dfrac{\pi }{3} \right)$$ We can obtain the solution of the above equation by taking $ x=3\theta ,\alpha =\dfrac{\pi }{3} $ and for some $ n\in I $ . We have, $$\Rightarrow 3\theta =n\pi +\dfrac{\pi }{3}$$ We divide both side of the equation by 3 and have $$\Rightarrow \theta =\dfrac{n\pi }{3}+\dfrac{\pi }{9}$$ We take $ \dfrac{\pi }{9} $ common in the right hand side of the equation and have, $$\Rightarrow \theta =\dfrac{\pi }{9}\left( 3n+1 \right),n\in I$$ **So, the correct answer is “Option C”.** **Note:** We note that $ 1-\tan 2\theta \tan \theta $ cannot be zero here and that is why we could divide with it. The value of $ \theta $ for which $ 1-\tan 2\theta \tan \theta =0 $ will not satisfy the given equation. Here we can find $ \theta =\left( \dfrac{2n+1}{6} \right)\pi $ .If $ A=B $ we get tangent double angle formula $ \tan 2A=\dfrac{2\tan A}{1-{{\tan }^{2}}A} $ . The tangent difference angle formula is given by $ \tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\cdot \tan B} $