Solveeit Logo

Question

Question: If \(\tan \theta = \sqrt {\dfrac{3}{2}} \) ,then the sum of the infinite series \(1 + 2(1 - \cos \th...

If tanθ=32\tan \theta = \sqrt {\dfrac{3}{2}} ,then the sum of the infinite series 1+2(1cosθ)+3(1cosθ)2+4(1cosθ)3+...1 + 2(1 - \cos \theta ) + 3{(1 - \cos \theta )^2} + 4{(1 - \cos \theta )^3} + ...\infty is
A) 23\dfrac{2}{3}
B) 34\dfrac{{\sqrt 3 }}{4}
C) 522\dfrac{5}{{2\sqrt 2 }}
D) 52\dfrac{5}{2}

Explanation

Solution

In the above question we have been given the value of tanθ\tan \theta . We will first assume the given infinite series as
SS i.e. S=1+2(1cosθ)+3(1cosθ)2+4(1cosθ)3+...S = 1 + 2(1 - \cos \theta ) + 3{(1 - \cos \theta )^2} + 4{(1 - \cos \theta )^3} + ...\infty .
After that we will multiply the expression with (1cosθ)(1 - \cos \theta ) .
The general form of the infinite geometric series is a,ar2,ar3...arna,a{r^2},a{r^3}...a{r^n} .
By comparing the given series in the question, we can see that the value of r=(1cosθ)r = (1 - \cos \theta ) .
We will apply the formula of sum of infinites series i.e.
S=a1r{S_\infty } = \dfrac{a}{{1 - r}} , where aa is the first term i.e. 11
and rr is the common ratio, (1cosθ)(1 - \cos \theta ) .

Complete step by step answer:
We have been given the infinite geometric series 1+2(1cosθ)+3(1cosθ)2+4(1cosθ)3+...1 + 2(1 - \cos \theta ) + 3{(1 - \cos \theta )^2} + 4{(1 - \cos \theta )^3} + ...\infty .
Let us assume that S=1+2(1cosθ)+3(1cosθ)2+4(1cosθ)3+...S = 1 + 2(1 - \cos \theta ) + 3{(1 - \cos \theta )^2} + 4{(1 - \cos \theta )^3} + ...\infty .
This is our first equation.
We will multiply both the side of the equation with (1cosθ)(1 - \cos \theta )
S(1 - \cos \theta ) = (1 - \cos \theta )\left\\{ {1 + 2(1 - \cos \theta ) + 3{{(1 - \cos \theta )}^2} + 4{{(1 - \cos \theta )}^3} + ...\infty } \right\\} .
We can write the above also as S - S\cos \theta = \left\\{ {1(1 - \cos \theta ) + 2(1 - \cos \theta )(1 - \cos \theta ) + 3{{(1 - \cos \theta )}^2}(1 - \cos \theta ) + 4{{(1 - \cos \theta )}^3}(1 - \cos \theta ) + ...\infty } \right\\}On multiplying the above expression can be written as S - S\cos \theta = \left\\{ {(1 - \cos \theta ) + 2{{(1 - \cos \theta )}^2} + 3{{(1 - \cos \theta )}^3} + 4{{(1 - \cos \theta )}^4} + ...\infty } \right\\}
This is our second equation.
Now we will subtract second equation from first equation i.e.
S - \left( {S - S\cos \theta } \right) = \left\\{ {1 + 2(1 - \cos \theta ) + 3{{(1 - \cos \theta )}^2} + 4{{(1 - \cos \theta )}^3} + ...\infty } \right\\} - \left\\{ {(1 - \cos \theta ) + 2{{(1 - \cos \theta )}^2} + 3{{(1 - \cos \theta )}^3} + 4{{(1 - \cos \theta )}^4} + ...\infty } \right\\}By breaking the values we can write: SS+Scosθ=1+2(1cosθ)(1cosθ)+3(1cosθ)22(1cosθ)2+...S - S + S\cos \theta = 1 + 2(1 - \cos \theta ) - (1 - \cos \theta ) + 3{(1 - \cos \theta )^2} - 2{(1 - \cos \theta )^2} + ...\infty
On subtracting the values above we have
Scosθ=1+(1cosθ)+(1cosθ)2+...S\cos \theta = 1 + (1 - \cos \theta ) + {(1 - \cos \theta )^2} + ...\infty
Now here we have the infinite series. So we will apply the formula of sum of the infinite series i.e.
S=a1r{S_\infty } = \dfrac{a}{{1 - r}} , where aa is the first term i.e.
11 and,
rr is the common ratio,
(1cosθ)(1 - \cos \theta )
By putting the values in the formula we have
Scosθ=11(1cosθ)S\cos \theta = \dfrac{1}{{1 - (1 - \cos \theta )}}
We can break down the value and it gives us
111+cosθ=1cosθ\dfrac{1}{{1 - 1 + \cos \theta }} = \dfrac{1}{{\cos \theta }}
By can transfer the cosine function to the other side i.e.
S=1cosθ×cosθ=1cos2θS = \dfrac{1}{{\cos \theta \times \cos \theta }} = \dfrac{1}{{{{\cos }^2}\theta }}
We know that
1cosθ=secθ\dfrac{1}{{\cos \theta }} = \sec \theta
So by putting this we can write
S=sec2θS = {\sec ^2}\theta
WE know the trigonometric identity that
sec2θ=1+tan2θ{\sec ^2}\theta = 1 + {\tan ^2}\theta , we will put this in the expression
We have,
S=1+tan2θS = 1 + {\tan ^2}\theta ,
And the value of tanθ\tan \theta is given, so we will put that in the expression:
S=1+(32)2S = 1 + {\left( {\sqrt {\dfrac{3}{2}} } \right)^2}
On simplifying we have
1+32=2+321 + \dfrac{3}{2} = \dfrac{{2 + 3}}{2}
It gives us the value
S=52S = \dfrac{5}{2}
Therefore, If tanθ=32\tan \theta = \sqrt {\dfrac{3}{2}} ,then the sum of the infinite series 1+2(1cosθ)+3(1cosθ)2+4(1cosθ)3+...1 + 2(1 - \cos \theta ) + 3{(1 - \cos \theta )^2} + 4{(1 - \cos \theta )^3} + ...\infty is 52\dfrac{5}{2}. Hence the correct option is (D).

Note:
We should know that in the above we have been given to find sum of infinite series, i.e.
here nn goes to \infty
If we have to find the sum of finite geometric series is
Sn=a(1rn1r){S_n} = a\left( {\dfrac{{1 - {r^n}}}{{1 - r}}} \right) , where nn is the number of terms.