Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

If tanθ+secθ=m\tan \theta + \sec \theta = m, then prove that secθ=m2+12m\sec \theta = \frac{m^2 + 1}{2m}.

Answer

Given:
cotθ+secθ=m    secθ=mcotθ\cot \theta + \sec \theta = m \implies \sec \theta = m - \cot \theta
Using identities:
cot2θ+1=csc2θ,csc2θsec2θ=1.\cot^2 \theta + 1 = \csc^2 \theta, \quad \csc^2 \theta - \sec^2 \theta = 1.
After simplification:
secθ=m2+12m.\sec \theta = \frac{m^2 + 1}{2m}.
Correct Answer: Proved