Solveeit Logo

Question

Question: If\(\tan \theta = n\tan \phi \), then the maximum value of \({\tan ^2}\left( {\theta - \phi } \right...

Iftanθ=ntanϕ\tan \theta = n\tan \phi , then the maximum value of tan2(θϕ){\tan ^2}\left( {\theta - \phi } \right) is
(a) (n1)24n\left( a \right){\text{ }}\dfrac{{{{\left( {n - 1} \right)}^2}}}{{4n}}
(b) (n1)4n\left( b \right){\text{ }}\dfrac{{\left( {n - 1} \right)}}{{4n}}
(c) (n1)4n2\left( c \right){\text{ }}\dfrac{{\left( {n - 1} \right)}}{{4{n^2}}}
(d) (n+1)24n\left( d \right){\text{ }}\dfrac{{{{\left( {n + 1} \right)}^2}}}{{4n}}

Explanation

Solution

First of all we will find them tan(θϕ)\tan \left( {\theta - \phi } \right)by using the formula tan(θϕ)=tanθtanϕ1+tanθtanϕ\tan \left( {\theta - \phi } \right) = \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}and then we will differentiate the equation tan2(θϕ){\tan ^2}\left( {\theta - \phi } \right)and from here we will get the valuetanϕ\tan \phi . And in this way, we can get the value.

Formula used:
tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}
And also the derivative for the division will be
ddx(uv)=vdudxudvdxv2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}

Complete step by step solution:
As from the formula tan(AB)=tanAtanB1+tanAtanB\tan \left( {A - B} \right) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}
We can write according to the question as
tan(θϕ)=tanθtanϕ1+tanθtanϕ\tan \left( {\theta - \phi } \right) = \dfrac{{\tan \theta - \tan \phi }}{{1 + \tan \theta \tan \phi }}
And also it is given that tanθ=ntanϕ\tan \theta = n\tan \phi
And from here it can be written as
(n1)tanϕ1+ntan2ϕ\Rightarrow \dfrac{{\left( {n - 1} \right)\tan \phi }}{{1 + n{{\tan }^2}\phi }}
Let suppose tan2(θϕ){\tan ^2}\left( {\theta - \phi } \right)be yy
Therefore,
y=tan2(θϕ)y = {\tan ^2}\left( {\theta - \phi } \right)
Now putting the value from the above we get
y=(n1)2tan2ϕ(1+ntan2ϕ)2\Rightarrow y = \dfrac{{{{\left( {n - 1} \right)}^2}{{\tan }^2}\phi }}{{{{\left( {1 + n{{\tan }^2}\phi } \right)}^2}}}
Now differentiating it with respect to ϕ\phi
dydϕ=(1+ntan2ϕ)2[(n1)22tanϕ.sec2ϕ](n1)2tan2ϕ[2(1+ntan2ϕ)2.n.tanϕ.sec2ϕ](1+ntan2ϕ)4\Rightarrow \dfrac{{dy}}{{d\phi }} = \dfrac{{{{\left( {1 + n{{\tan }^2}\phi } \right)}^2}\left[ {{{\left( {n - 1} \right)}^2}2\tan \phi .{{\sec }^2}\phi } \right] - {{\left( {n - 1} \right)}^2}{{\tan }^2}\phi \left[ {2\left( {1 + n{{\tan }^2}\phi } \right)2.n.\tan \phi .{{\sec }^2}\phi } \right]}}{{{{\left( {1 + n{{\tan }^2}\phi } \right)}^4}}}
So here,
dydϕ=0\dfrac{{dy}}{{d\phi }} = 0, for maximum.
So on equating, we get
02(n1)2tanϕ.sec2ϕ(1+ntan2ϕ)[1+ntan2ϕ2ntan2ϕ]0 \Rightarrow 2{\left( {n - 1} \right)^2}\tan \phi .{\sec ^2}\phi \left( {1 + n{{\tan }^2}\phi } \right)\left[ {1 + n{{\tan }^2}\phi - 2n{{\tan }^2}\phi } \right]
On further solving more, we get
02(n1)2tanϕ.sec2ϕ(1+ntan2ϕ)[1ntan2ϕ]0 \Rightarrow 2{\left( {n - 1} \right)^2}\tan \phi .{\sec ^2}\phi \left( {1 + n{{\tan }^2}\phi } \right)\left[ {1 - n{{\tan }^2}\phi } \right]
So now on equating each term with the LHS, we get
tan2ϕ=0\Rightarrow {\tan ^2}\phi = 0, and also 1ntan2ϕ=01 - n{\tan ^2}\phi = 0
And from here tan2ϕ=1n{\tan ^2}\phi = \dfrac{1}{n}
So now putting the above value oftan2ϕ{\tan ^2}\phi in the value ofyy, we get
y=(n1)20(1+n0)2=0\Rightarrow y = \dfrac{{{{\left( {n - 1} \right)}^2}0}}{{{{\left( {1 + n0} \right)}^2}}} = 0
And for the other value oftan2ϕ{\tan ^2}\phi , we get
y=(n1)21n(1+n1n)2\Rightarrow y = \dfrac{{{{\left( {n - 1} \right)}^2}\dfrac{1}{n}}}{{{{\left( {1 + n\dfrac{1}{n}} \right)}^2}}}
And on further solving more, we get
y=(n1)241n\Rightarrow y = \dfrac{{{{\left( {n - 1} \right)}^2}}}{4}\dfrac{1}{n}
And it will be equal to
y=(n1)24n\Rightarrow y = \dfrac{{{{\left( {n - 1} \right)}^2}}}{{4n}}
Therefore, y=(n1)24ny = \dfrac{{{{\left( {n - 1} \right)}^2}}}{{4n}}will be the maximum value oftan2(θϕ){\tan ^2}\left( {\theta - \phi } \right).

Hence, the option (a)\left( a \right)will be correct.

Note:
As we have seen that without formula and identities we can find the values of such functions. To find the appropriate formula at one click would come through the experience gained and the more basic formulas we have memorized. Also, we should always try to use sin and cos form because most of the formulas are based on this. It can be easily solved then. So we should always try to learn all the formulas related to trigonometric to solve the problem without any error and easily.