Solveeit Logo

Question

Question: If \(\tan \theta =\dfrac{x\sin \phi }{1-x\cos \phi }\)and \(\tan \phi =\dfrac{y\sin \theta }{1-y\cos...

If tanθ=xsinϕ1xcosϕ\tan \theta =\dfrac{x\sin \phi }{1-x\cos \phi }and tanϕ=ysinθ1ycosθ\tan \phi =\dfrac{y\sin \theta }{1-y\cos \theta }, then find xy\dfrac{x}{y}

Explanation

Solution

To solve the above question we will first find the value of x and y by using the cross multiplication method for the given expressions. Then we will divide x by y and then we will simplify it to get a simpler answer. For simplifying, we will use the formula tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }.

Complete step-by-step solution
Since we have to find the value of xy\dfrac{x}{y} so we will first find the value of x and y.
Since, from question we know that tanθ=xsinϕ1xcosϕ\tan \theta =\dfrac{x\sin \phi }{1-x\cos \phi }
After cross multiplication we will get:
tanθxcosϕtanθ=xsinϕ\tan \theta -x\cos \phi \tan \theta =x\sin \phi
tanθ=x(cosϕtanθ+sinϕ)\Rightarrow \tan \theta =x\left( \cos \phi \tan \theta +\sin \phi \right)
Now, we will take common take cosϕ\cos \phi common from the Right-hand side, then we will get:
xcosϕ(tanθ+sinϕcosϕ)=tanθ\Rightarrow x\cos \phi \left( \tan \theta +\dfrac{\sin \phi }{\cos \phi } \right)=\tan \theta
We know that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }, so we will put it in above equation:
xcosϕ(tanθ+tanϕ)=tanθ\Rightarrow x\cos \phi \left( \tan \theta +\tan \phi \right)=\tan \theta
x=tanθcosϕ(tanθ+tanϕ)..............(1)\therefore x=\dfrac{\tan \theta }{\cos \phi \left( \tan \theta +\tan \phi \right)}..............\left( 1 \right)
Now, we will find the value of y using the equation tanϕ=ysinθ1ycosθ\tan \phi =\dfrac{y\sin \theta }{1-y\cos \theta }
After cross multiplication we will get:
tanϕycosθtanϕ=ysinθ\tan \phi -y\cos \theta \tan \phi =y\sin \theta
tanϕ=y(cosθtanϕ+sinθ)\Rightarrow \tan \phi =y\left( \cos \theta \tan \phi +\sin \theta \right)
Now, we will take common take cosθ\cos \theta common from the Right-hand side, then we will get:
ycosθ(tanϕ+sinθcosθ)=tanϕ\Rightarrow y\cos \theta \left( \tan \phi +\dfrac{\sin \theta }{\cos \theta } \right)=\tan \phi
We know that tanϕ=sinϕcosϕ\tan \phi =\dfrac{\sin \phi }{\cos \phi }, so we will put it in above equation
ycosθ(tanθ+tanϕ)=tanϕ\Rightarrow y\cos \theta \left( \tan \theta +\tan \phi \right)=\tan \phi
y=tanϕcosθ(tanθ+tanϕ)..............(2)\therefore y=\dfrac{\tan \phi }{\cos \theta \left( \tan \theta +\tan \phi \right)}..............\left( 2 \right)
Now, we will divide equation (1) and (2), then we will get:
xy=tanθcosϕ(tanθ+tanϕ)tanϕcosθ(tanθ+tanϕ)\Rightarrow \dfrac{x}{y}=\dfrac{\dfrac{\tan \theta }{\cos \phi \left( \tan \theta +\tan \phi \right)}}{\dfrac{\tan \phi }{\cos \theta \left( \tan \theta +\tan \phi \right)}}
Now, after cancelling the term (tanθ+tanϕ)\left( \tan \theta +\tan \phi \right) we will get:
xy=tanθcosϕtanϕcosθ\Rightarrow \dfrac{x}{y}=\dfrac{\dfrac{\tan \theta }{\cos \phi }}{\dfrac{\tan \phi }{\cos \theta }}
xy=tanθcosθtanϕcosϕ\Rightarrow \dfrac{x}{y}=\dfrac{\tan \theta \cos \theta }{\tan \phi \cos \phi }
Since, we know that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } so, tanθcosθ\tan \theta \cos \theta is equal to cosθ×sinθcosθ=sinθ\cos \theta \times \dfrac{\sin \theta }{\cos \theta }=\sin \theta . Similarly,tanϕcosϕ=sinϕ\tan \phi \cos \phi =\sin \phi
Hence, xy=sinθsinϕ\dfrac{x}{y}=\dfrac{\sin \theta }{\sin \phi }
This is our required solution.

Note: Students are required to note that whenever in the question we are asked to find the value and we are getting the value in any function or variable then we have to simplify that function or variable as much as possible to get simpler form other students will not get full marks in the examination. Another approach is to directly divide the given expressions and then apply the simplifications so as to cancel out similar terms and get the simplest form.