Solveeit Logo

Question

Question: If \(\tan \theta =\dfrac{\sin \alpha -\cos \alpha }{\sin \alpha +\cos \alpha }\) , then show that \(...

If tanθ=sinαcosαsinα+cosα\tan \theta =\dfrac{\sin \alpha -\cos \alpha }{\sin \alpha +\cos \alpha } , then show that sinα+cosα=2cosθ\sin \alpha +cos\alpha =\sqrt{2}\cos \theta .

Explanation

Solution

Hint: First, start by simplifying the equation tanθ=sinαcosαsinα+cosα\tan \theta =\dfrac{\sin \alpha -\cos \alpha }{\sin \alpha +\cos \alpha } to get a relation between θ and α\theta \text{ and }\alpha . Once you get the relation, substitute the value of θ\theta in the right-hand side of the equation that we need to prove. Solve the expression to get the answer.

Complete step-by-step answer:
It is given in the question that tanθ=sinαcosαsinα+cosα\tan \theta =\dfrac{\sin \alpha -\cos \alpha }{\sin \alpha +\cos \alpha } . So, simplifying this, we get
tanθ=sinαcosαsinα+cosα\tan \theta =\dfrac{\sin \alpha -\cos \alpha }{\sin \alpha +\cos \alpha }
tanθ=cosα(sinαcosα1)cosα(sinαcosα+1)\Rightarrow \tan \theta =\dfrac{\cos \alpha \left( \dfrac{\sin \alpha }{\cos \alpha }-1 \right)}{\cos \alpha \left( \dfrac{\sin \alpha }{\cos \alpha }+1 \right)}
We know that tanA=sinAcosA\tan A=\dfrac{\sin A}{\cos A} .
tanθ=sinαcosα1sinαcosα+1\tan \theta =\dfrac{\dfrac{\sin \alpha }{\cos \alpha }-1}{\dfrac{\sin \alpha }{\cos \alpha }+1}
tanθ=tanα1tanα+1\Rightarrow \tan \theta =\dfrac{\tan \alpha -1}{\tan \alpha +1}
Now we know that tan(A45)=tanA1tanA+1\tan \left( A-45{}^\circ \right)=\dfrac{\tan A-1}{\tan A+1} . Therefore, we can say that:
tanθ=tan(α45)\tan \theta =\tan \left( \alpha -45{}^\circ \right)
From here, we can conclude that θ=(α45)\theta =\left( \alpha -45{}^\circ \right) .
Now starting with the right-hand side of the equation that we need to prove. If we put θ=α45\theta =\alpha -45{}^\circ in the expression, we get:
2cosθ\sqrt{2}\cos \theta
=2cos(α45)=\sqrt{2}\cos \left( \alpha -45{}^\circ \right)
Now we know that cos(A45)=cosA2+sinA2\cos \left( A-45{}^\circ \right)=\dfrac{\cos A}{\sqrt{2}}+\dfrac{\sin A}{\sqrt{2}} . On using this in our expression, we get
=2(cosα2+sinα2)=\sqrt{2}\left( \dfrac{\cos \alpha }{\sqrt{2}}+\dfrac{\sin \alpha }{\sqrt{2}} \right)
=cosα+sinα=\cos \alpha +\sin \alpha
The left-hand side of the equation given in the question is equal to the right-hand side of the equation. Hence, we can say that we have proved the equation given in the question.

Note: Be careful about the calculation and the signs while opening the brackets. The general mistake that a student can make is 1+x-(x-1)=1+x-x-1. Also, be careful about the signs in the formula of sin(A-B) and sin(A+B). Also, you should know that tanθ=tan(α45)\tan \theta =\tan \left( \alpha -45{}^\circ \right) actually implies that θ=nπ+(α45)\theta =n\pi +\left( \alpha -45{}^\circ \right), and θ=α45\theta =\alpha -45{}^\circ is just one of the many possible solutions that we used in the above question.