Solveeit Logo

Question

Question: If\(\tan \theta =\dfrac{a}{b}\), show that: \(\dfrac{a\sin \theta -b\cos \theta }{a\sin \theta +b\co...

Iftanθ=ab\tan \theta =\dfrac{a}{b}, show that: asinθbcosθasinθ+bcosθ=(a2b2)(a2+b2)\dfrac{a\sin \theta -b\cos \theta }{a\sin \theta +b\cos \theta }=\dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)}{\left( {{a}^{2}}+{{b}^{2}} \right)}$$$$

Explanation

Solution

We will try to convert sine and cosine of angle θ\theta present in the numerator at the left hand side of the equation in terms of tangent of the angle θ\theta using the formula sec2θ1=tan2θ{{\sec }^{2}}\theta -1={{\tan }^{2}}\theta so that we can use the give value tanθ=ab\tan \theta =\dfrac{a}{b}. We replace sinθ,cosθ\sin \theta ,\cos \theta with the obtained expressions in a,ba,b at the left hand side and simplify till we arrive at the right hand side. $$$$

Complete step-by-step answer:
Now, from the given question we have
tanθ=ab     ...(a)\tan \theta =\dfrac{a}{b}\ \ \ \ \ ...(a)
Now, by using the trigonometric identity which gives the relation between the function that are mentioned in the hint, we get the following
tanθ=sinθcosθ\Rightarrow \tan \theta =\dfrac{\sin \theta }{\cos \theta }
Now, this can also be written as the following using the other relations given in the hint as follows

& \Rightarrow {{\sec }^{2}}\theta -1={{\tan }^{2}}\theta \\\ & \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}-1={{\tan }^{2}}\theta \\\ & \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}={{\tan }^{2}}\theta +1 \\\ \end{aligned}$$ Let us now substitute the value from the question and as well as from equation (a) in this $$\begin{aligned} & \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}={{\left( \dfrac{a}{b} \right)}^{2}}+1 \\\ & \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}=\left( \dfrac{{{a}^{2}}}{{{b}^{2}}} \right)+1 \\\ & \Rightarrow {{\left( \dfrac{1}{\cos \theta } \right)}^{2}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{b}^{2}}} \\\ \end{aligned}$$ Now, this can be further written as $$\begin{aligned} & \Rightarrow \left( \dfrac{1}{\cos \theta } \right)=\sqrt{\dfrac{{{a}^{2}}+{{b}^{2}}}{{{b}^{2}}}} \\\ & \Rightarrow \cos \theta =\sqrt{\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}} \\\ \end{aligned}$$ Now, using the relation between the sin and cos function, we have $$\Rightarrow {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$$ Now, this can be used to get the expression which can be written as $$\begin{aligned} & \Rightarrow {{\left( \sqrt{\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}} \right)}^{2}}+{{\sin }^{2}}\theta =1 \\\ & \Rightarrow \dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}+{{\sin }^{2}}\theta =1 \\\ & \Rightarrow {{\sin }^{2}}\theta =1-\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}} \\\ & \Rightarrow {{\sin }^{2}}\theta =\dfrac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}} \\\ & \Rightarrow \sin \theta =\sqrt{\dfrac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}} \\\ \end{aligned}$$ Now, from the given expression in the question, on substituting the values, we have $$\dfrac{a\sin \theta -b\cos \theta }{a\sin \theta +b\cos \theta }=\dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)}{\left( {{a}^{2}}+{{b}^{2}} \right)}$$ Let us first consider the left hand side and calculate its value $$\begin{aligned} & L.H.S=\dfrac{a\sin \theta -b\cos \theta }{a\sin \theta +b\cos \theta } \\\ & L.H.S=\dfrac{a\times \sqrt{\dfrac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}}-b\times \sqrt{\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}}}{a\times \sqrt{\dfrac{{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}}}+b\times \sqrt{\dfrac{{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}}} \\\ & L.H.S=\dfrac{{{a}^{2}}\sqrt{\dfrac{1}{a+b}}-{{b}^{2}}\sqrt{\dfrac{1}{a+b}}}{{{a}^{2}}\sqrt{\dfrac{1}{a+b}}+{{b}^{2}}\sqrt{\dfrac{1}{a+b}}} \\\ & L.H.S=\dfrac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}} \\\ \end{aligned}$$ Thus, the value of right hand side is equal to left hand side Hence, it is verified that, $$\dfrac{a\sin \theta -b\cos \theta }{a\sin \theta +b\cos \theta }=\dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)}{\left( {{a}^{2}}+{{b}^{2}} \right)}$$ **Note:** We note that the angles of the variables at the denominator at any expression cannot be zero, so we have $b\ne 0$. We also note that for $\tan \theta $ to exist $\theta $ cannot be $\dfrac{{\left( {2n + 1} \right)}}{2}\pi $ where $n$ is any integer. We can alternatively solve by dividing $\cos \theta $ at the denominator and numerator at the left hand side expression and then putting $\tan \theta =\dfrac{a}{b}$.