Solveeit Logo

Question

Question: If \(\tan \theta - \cot \theta = a\) and \(\sin \theta + \cos \theta = b\), then \({\left( {{b^2} - ...

If tanθcotθ=a\tan \theta - \cot \theta = a and sinθ+cosθ=b\sin \theta + \cos \theta = b, then (b21)2(a2+1){\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right) is equal to
A.22
B.4 - 4
C.±4 \pm 4
D.44

Explanation

Solution

In order to solve the equation (b21)2(a2+1){\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right), solve the two equations given separately to find the value of b2{b^2} and a2{a^2}, or the simplest that can be found and then substitute that value in the main equation (b21)2(a2+1){\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right) solve the obtained equation and get the results. Trigonometric identities are the main part used in this process.
Formula used:
tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}
(cos2θsin2θ)=cos2θ\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta
2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1

Complete answer:
We are given two equations: tanθcotθ=a\tan \theta - \cot \theta = a and sinθ+cosθ=b\sin \theta + \cos \theta = b.
Taking each equation separately and solving them to their simplest term.
Starting with tanθcotθ=a\tan \theta - \cot \theta = a.
Writing the equation tanθcotθ=a\tan \theta - \cot \theta = a in terms of sine and cosine and we get:
sinθcosθcosθsinθ=a\dfrac{{\sin \theta }}{{\cos \theta }} - \dfrac{{\cos \theta }}{{\sin \theta }} = a
Taking a common denominator by solving them:
sin2θcos2θcosθsinθ=a\Rightarrow \dfrac{{{{\sin }^2}\theta - {{\cos }^2}\theta }}{{\cos \theta \sin \theta }} = a
Taking negative sign out:
(cos2θsin2θ)cosθsinθ=a\Rightarrow \dfrac{{ - \left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)}}{{\cos \theta \sin \theta }} = a
Multiplying and dividing both the denominator and numerator by 2 on the left side:
2(cos2θsin2θ)2sinθcosθ=a\Rightarrow \dfrac{{ - 2\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right)}}{{2\sin \theta \cos \theta }} = a
From the trigonometric formulas we know that (cos2θsin2θ)=cos2θ\left( {{{\cos }^2}\theta - {{\sin }^2}\theta } \right) = \cos 2\theta and 2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta , so substituting this in the above equation, we get:
2cos2θsin2θ=a\Rightarrow \dfrac{{ - 2\cos 2\theta }}{{\sin 2\theta }} = a
Squaring both the sides:
(2cos2θ)2sin22θ=a2\Rightarrow \dfrac{{{{\left( { - 2\cos 2\theta } \right)}^2}}}{{{{\sin }^2}2\theta }} = {a^2}
4cos22θsin22θ=a2\Rightarrow \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2}
Adding 4 both the sides:
4+4cos22θsin22θ=a2+4\Rightarrow 4 + \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2} + 4
Multiplying and dividing 4 by sin22θ{\sin ^2}2\theta on the left side:
4sin22θsin22θ+4cos22θsin22θ=a2+4\Rightarrow 4\dfrac{{{{\sin }^2}2\theta }}{{{{\sin }^2}2\theta }} + \dfrac{{4{{\cos }^2}2\theta }}{{{{\sin }^2}2\theta }} = {a^2} + 4
Taking sin22θ{\sin ^2}2\theta common in the denominator and 4 in the numerator, we get:
4(sin22θ+cos22θ)sin22θ=a2+4\Rightarrow \dfrac{{4\left( {{{\sin }^2}2\theta + {{\cos }^2}2\theta } \right)}}{{{{\sin }^2}2\theta }} = {a^2} + 4
Since, we know that (sin22θ+cos22θ)=1\left( {{{\sin }^2}2\theta + {{\cos }^2}2\theta } \right) = 1:
4×1sin22θ=a2+4\Rightarrow \dfrac{{4 \times 1}}{{{{\sin }^2}2\theta }} = {a^2} + 4
4sin22θ=a2+4\Rightarrow \dfrac{4}{{{{\sin }^2}2\theta }} = {a^2} + 4 ……………..(1)
For the second equation sinθ+cosθ=b\sin \theta + \cos \theta = b:
Squaring both the sides:
(sinθ+cosθ)2=b2{\left( {\sin \theta + \cos \theta } \right)^2} = {b^2}
Expanding the terms on the left side using (x+y)2=x2+y2+2xy{\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy:
sin2θ+cos2θ+2sinθcosθ=b2\Rightarrow {\sin ^2}\theta + {\cos ^2}\theta + 2\sin \theta \cos \theta = {b^2}
Substituting the value sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 and 2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta , we get:
1+sin2θ=b2\Rightarrow 1 + \sin 2\theta = {b^2}
Subtracting both the sides by 1:
1+sin2θ1=b21\Rightarrow 1 + \sin 2\theta - 1 = {b^2} - 1
sin2θ=b21\Rightarrow \sin 2\theta = {b^2} - 1 ……(2)
We need to find the value of (b21)2(a2+1){\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right):
So, substituting 1 and 2 in the above equation and we get:
(b21)2(a2+1){\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right)
(sin2θ)2(4sin22θ)\Rightarrow {\left( {\sin 2\theta } \right)^2}\left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right)
sin22θ(4sin22θ)\Rightarrow {\sin ^2}2\theta \left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right)
Cancelling out the common terms:
sin22θ(4sin22θ)=4\Rightarrow {\sin ^2}2\theta \left( {\dfrac{4}{{{{\sin }^2}2\theta }}} \right) = 4
Therefore, the value of (b21)2(a2+1)=4{\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right) = 4.
Hence, Option D is correct.

Note:
We can solve the equation (b21)2(a2+1){\left( {{b^2} - 1} \right)^2}\left( {{a^2} + 1} \right) directly by substituting the two sub-equations given but squaring the terms and then solving it, may complicate the equation. So, it’s preferred to solve each equation separately and then substitute them.