Solveeit Logo

Question

Question: If \( \tan \theta +\cot \theta =2 \) , find the value of \( {{\tan }^{2}}\theta +{{\cot }^{2}}\theta...

If tanθ+cotθ=2\tan \theta +\cot \theta =2 , find the value of tan2θ+cot2θ{{\tan }^{2}}\theta +{{\cot }^{2}}\theta

Explanation

Solution

Recall that tanθ=1cotθ\tan \theta =\dfrac{1}{\cot \theta } .
Square both the sides of the given equation and use the expansion: (a±b)2=a2+b2±2ab{{(a\pm b)}^{2}}={{a}^{2}}+{{b}^{2}}\pm 2ab .
The value of the square of a real number cannot be negative. i.e. x20,xR{{x}^{2}}\ge 0,x\in \mathbb{R} .

Complete step-by-step answer:
It is given that tanθ+cotθ=2\tan \theta +\cot \theta =2 .
Squaring both sides, we get:
(tanθ+cotθ)2=22{{(\tan \theta +\cot \theta )}^{2}}={{2}^{2}}
On expanding by using the distributive property of multiplication, we get:
tan2θ+cot2θ+2tanθcotθ=4{{\tan }^{2}}\theta +{{\cot }^{2}}\theta +2\tan \theta \cot \theta =4
Since tanθ=1cotθ\tan \theta =\dfrac{1}{\cot \theta } , we have tanθcotθ=1\tan \theta \cot \theta =1 . Substituting this value in the above equation, we get:
tan2θ+cot2θ+2=4{{\tan }^{2}}\theta +{{\cot }^{2}}\theta +2=4
Subtracting 2 from both the sides, we get:
tan2θ+cot2θ=2{{\tan }^{2}}\theta +{{\cot }^{2}}\theta =2 , which is the required answer.

The answer must be correct, as both tan2θ,cot2θ>0{{\tan }^{2}}\theta ,{{\cot }^{2}}\theta >0 and 2>02>0.

Note: In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
sinθ=PH\sin \theta =\dfrac{P}{H} , cosθ=BH\cos \theta =\dfrac{B}{H} , tanθ=PB\tan \theta =\dfrac{P}{B}
tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } , cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }
cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta } , secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } , tanθ=1cotθ\tan \theta =\dfrac{1}{\cot \theta }
Some useful algebraic identities:
(a+b)(ab)=a2b2(a+b)(a-b)={{a}^{2}}-{{b}^{2}}
(a±b)2=a2±2ab+b2{{(a\pm b)}^{2}}={{a}^{2}}\pm 2ab+{{b}^{2}}
(a±b)3=a3±3ab(a±b)±b3{{(a\pm b)}^{3}}={{a}^{3}}\pm 3ab(a\pm b)\pm {{b}^{3}}
(a±b)(a2ab+b2)=a3±b3(a\pm b)({{a}^{2}}\mp ab+{{b}^{2}})={{a}^{3}}\pm {{b}^{3}}