Solveeit Logo

Question

Question: If \[\tan \theta = a - \dfrac{1}{{4a}}\] , then \[\sec \theta - \tan \theta \] equals to _________ ...

If tanθ=a14a\tan \theta = a - \dfrac{1}{{4a}} , then secθtanθ\sec \theta - \tan \theta equals to _________
A. 2a2a
B. 12a,2a\dfrac{1}{{2a}},-2a
C. 12a,2a - \dfrac{1}{{2a}},2a
D. a,12a - a,\dfrac{1}{{2a}}

Explanation

Solution

Hint : We use the identity 1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta to solve the given problem. By using this identity we can find the value of secθ\sec \theta and substituting this in the given problem we get the required result. We also know (a2+b2)=a2+b2+2ab({a^2} + {b^2}) = {a^2} + {b^2} + 2ab and we are going to use this formula while doing simplification.

Complete step-by-step answer :
Let assume that k=secθtanθ - - - - - - (1)k = \sec \theta - \tan \theta {\text{ - - - - - - (1)}} . Now we need to find the value of ‘k’.
Now we have the identity 1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta ,
Rearranging we have,
sec2θ=1+tan2θ\Rightarrow {\sec ^2}\theta = 1 + {\tan ^2}\theta
Taking square root on both side we will have,
secθ=1+tan2θ - - - - - (2)\Rightarrow \sec \theta = \sqrt {1 + {{\tan }^2}\theta } {\text{ - - - - - (2)}}
Now substituting equation (2) in equation (1) we have,
k=1+tan2θtanθk = \sqrt {1 + {{\tan }^2}\theta } - \tan \theta
But in the given problem we have, tanθ=a14a\tan \theta = a - \dfrac{1}{{4a}} .
Substituting in ‘k’ we have,
1+(a14a)2(a14a)\Rightarrow \sqrt {1 + {{\left( {a - \dfrac{1}{{4a}}} \right)}^2}} - \left( {a - \dfrac{1}{{4a}}} \right)
We know (a2b2)=a2+b22ab({a^2} - {b^2}) = {a^2} + {b^2} - 2ab , applying in above we have,
1+a2+(14a)22.a.14aa+14a\Rightarrow \sqrt {1 + {a^2} + {{\left( {\dfrac{1}{{4a}}} \right)}^2} - 2.a.\dfrac{1}{{4a}}} - a + \dfrac{1}{{4a}}
Cancelling the terms we have,
1+a2+(14a)212a+14a\Rightarrow \sqrt {1 + {a^2} + {{\left( {\dfrac{1}{{4a}}} \right)}^2} - \dfrac{1}{2}} - a + \dfrac{1}{{4a}}
112+a2+(14a)2a+14a\Rightarrow \sqrt {1 - \dfrac{1}{2} + {a^2} + {{\left( {\dfrac{1}{{4a}}} \right)}^2}} - a + \dfrac{1}{{4a}}
We know 112=121 - \dfrac{1}{2} = \dfrac{1}{2} , then
12+a2+(14a)2a+14a\Rightarrow \sqrt {\dfrac{1}{2} + {a^2} + {{\left( {\dfrac{1}{{4a}}} \right)}^2}} - a + \dfrac{1}{{4a}}
We know that (a+14a)2=a2+(14a)2+2.a.14a=a2+(14a)2+12{\left( {a + \dfrac{1}{{4a}}} \right)^2} = {a^2} + {\left( {\dfrac{1}{{4a}}} \right)^2} + 2.a.\dfrac{1}{{4a}} = {a^2} + {\left( {\dfrac{1}{{4a}}} \right)^2} + \dfrac{1}{2}
Replacing the terms we have,
(a+14a)2a+14a\Rightarrow \sqrt {{{\left( {a + \dfrac{1}{{4a}}} \right)}^2}} - a + \dfrac{1}{{4a}}
After cancelling the square and square root we will have,
±(a+14a)a+14a\Rightarrow \pm \left( {a + \dfrac{1}{{4a}}} \right) - a + \dfrac{1}{{4a}}
That is two values,
Now taking positive sign +(a+14a)a+14a \Rightarrow + \left( {a + \dfrac{1}{{4a}}} \right) - a + \dfrac{1}{{4a}}
a+14aa+14a\Rightarrow a + \dfrac{1}{{4a}} - a + \dfrac{1}{{4a}}
Cancelling ‘a’ we get,
14a+14a\Rightarrow \dfrac{1}{{4a}} + \dfrac{1}{{4a}}
Taking L.C.M we have,
1+14a\Rightarrow \dfrac{{1 + 1}}{{4a}}
24a\Rightarrow \dfrac{2}{{4a}}
Cancelling we have
12a\Rightarrow \dfrac{1}{{2a}}
Now taking negative sign value (a+14a)a+14a \Rightarrow - \left( {a + \dfrac{1}{{4a}}} \right) - a + \dfrac{1}{{4a}}
a14aa+14a\Rightarrow - a - \dfrac{1}{{4a}} - a + \dfrac{1}{{4a}}
Cancelling we have,
aa\Rightarrow - a - a
2a\Rightarrow - 2a .
Thus we have k=12a,2ak = \dfrac{1}{{2a}},-2a .
So, the correct answer is “Option B”.

Note : Know the difference between tan2θ{\tan ^2}\theta and tan2θ\tan 2\theta . Both are different. That is, we know tan2θ=(tanθ)2{\tan ^2}\theta = {\left( {\tan \theta } \right)^2} and tan2θ\tan 2\theta is two multiplied with the angle. Don’t get confused with these two. Remember the important and identities formula in trigonometric functions. In above instead of secθ\sec \theta if we have cotθ\cot \theta we would have solved this easily. Because tangent reciprocal is cotangent. By directly substituting we would get the answer.