Question
Question: If \[\tan {\theta _1} = k\cot {\theta _2}\], then \[\dfrac{{\cos \left( {{\theta _1} - {\theta _2}} ...
If tanθ1=kcotθ2, then cos(θ1+θ2)cos(θ1−θ2)=.
A) 1−k1+k
B) 1+k1−k
C) k−1k+1
D) k+1k−1
Solution
Here, we will use the cosine property, cos(θ1−θ2)=cosθ1cosθ2+sinθ1sinθ2 in the numerator and cos(θ1+θ2)=cosθ1cosθ2−sinθ1sinθ2 in the denominator of the given equation. Then we will divide the numerator and denominator of the equation by cosθ1cosθ2 and use the tangential property tanθ1=cosθ1sinθ1 and tanθ2=cosθ2sinθ2 in the obtained equation. Then we will substitute the given value to simply it to find the required value.
Complete step by step solution: We are given that cos(θ1+θ2)cos(θ1−θ2).
Using the cosine property, cos(θ1−θ2)=cosθ1cosθ2+sinθ1sinθ2 in the numerator and cos(θ1+θ2)=cosθ1cosθ2−sinθ1sinθ2 in the denominator of the above equation, we get
⇒cosθ1cosθ2−sinθ1sinθ2cosθ1cosθ2+sinθ1sinθ2
Dividing the numerator and denominator of the above equation by cosθ1cosθ2, we get
⇒cosθ1cosθ2cosθ1cosθ2−sinθ1sinθ2cosθ1cosθ2cosθ1cosθ2+sinθ1sinθ2 ⇒cosθ1cosθ2cosθ1cosθ2−cosθ1cosθ2sinθ1sinθ2cosθ1cosθ2cosθ1cosθ2+cosθ1cosθ2sinθ1sinθ2 ⇒1−cosθ1sinθ1×cosθ2sinθ21+cosθ1sinθ1×cosθ2sinθ2Using the tangential property tanθ1=cosθ1sinθ1 and tanθ2=cosθ2sinθ2 in the above equation, we get
⇒1−tanθ1tanθ21+tanθ1tanθ2
Substituting the value tanθ1=kcotθ2 in the above equation, we get
⇒1−kcotθ1tanθ21+kcotθ1tanθ2
Using the tangential property, cotAtanA=1in the above equation, we get
⇒1−k1+k
Hence, option A is correct.
Note:
In this problem, students need to be thorough with the basic trigonometric value of different ratios, such as sine, cosine, tangent, their properties and the ways to use them to solve it. Be careful while using the properties in the given problem as there are two angles θ1 and θ2.