Solveeit Logo

Question

Question: If \[\tan {\theta _1} = k\cot {\theta _2}\], then \[\dfrac{{\cos \left( {{\theta _1} - {\theta _2}} ...

If tanθ1=kcotθ2\tan {\theta _1} = k\cot {\theta _2}, then cos(θ1θ2)cos(θ1+θ2)=\dfrac{{\cos \left( {{\theta _1} - {\theta _2}} \right)}}{{\cos \left( {{\theta _1} + {\theta _2}} \right)}} = .
A) 1+k1k\dfrac{{1 + k}}{{1 - k}}
B) 1k1+k\dfrac{{1 - k}}{{1 + k}}
C) k+1k1\dfrac{{k + 1}}{{k - 1}}
D) k1k+1\dfrac{{k - 1}}{{k + 1}}

Explanation

Solution

Here, we will use the cosine property, cos(θ1θ2)=cosθ1cosθ2+sinθ1sinθ2\cos \left( {{\theta _1} - {\theta _2}} \right) = \cos {\theta _1}\cos {\theta _2} + \sin {\theta _1}\sin {\theta _2} in the numerator and cos(θ1+θ2)=cosθ1cosθ2sinθ1sinθ2\cos \left( {{\theta _1} + {\theta _2}} \right) = \cos {\theta _1}\cos {\theta _2} - \sin {\theta _1}\sin {\theta _2} in the denominator of the given equation. Then we will divide the numerator and denominator of the equation by cosθ1cosθ2\cos {\theta _1}\cos {\theta _2} and use the tangential property tanθ1=sinθ1cosθ1\tan {\theta _1} = \dfrac{{\sin {\theta _1}}}{{\cos {\theta _1}}} and tanθ2=sinθ2cosθ2\tan {\theta _2} = \dfrac{{\sin {\theta _2}}}{{\cos {\theta _2}}} in the obtained equation. Then we will substitute the given value to simply it to find the required value.

Complete step by step solution: We are given that cos(θ1θ2)cos(θ1+θ2)\dfrac{{\cos \left( {{\theta _1} - {\theta _2}} \right)}}{{\cos \left( {{\theta _1} + {\theta _2}} \right)}}.

Using the cosine property, cos(θ1θ2)=cosθ1cosθ2+sinθ1sinθ2\cos \left( {{\theta _1} - {\theta _2}} \right) = \cos {\theta _1}\cos {\theta _2} + \sin {\theta _1}\sin {\theta _2} in the numerator and cos(θ1+θ2)=cosθ1cosθ2sinθ1sinθ2\cos \left( {{\theta _1} + {\theta _2}} \right) = \cos {\theta _1}\cos {\theta _2} - \sin {\theta _1}\sin {\theta _2} in the denominator of the above equation, we get

cosθ1cosθ2+sinθ1sinθ2cosθ1cosθ2sinθ1sinθ2 \Rightarrow \dfrac{{\cos {\theta _1}\cos {\theta _2} + \sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2} - \sin {\theta _1}\sin {\theta _2}}}

Dividing the numerator and denominator of the above equation by cosθ1cosθ2\cos {\theta _1}\cos {\theta _2}, we get

cosθ1cosθ2+sinθ1sinθ2cosθ1cosθ2cosθ1cosθ2sinθ1sinθ2cosθ1cosθ2 cosθ1cosθ2cosθ1cosθ2+sinθ1sinθ2cosθ1cosθ2cosθ1cosθ2cosθ1cosθ2sinθ1sinθ2cosθ1cosθ2 1+sinθ1cosθ1×sinθ2cosθ21sinθ1cosθ1×sinθ2cosθ2  \Rightarrow \dfrac{{\dfrac{{\cos {\theta _1}\cos {\theta _2} + \sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}}}}{{\dfrac{{\cos {\theta _1}\cos {\theta _2} - \sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}}}} \\\ \Rightarrow \dfrac{{\dfrac{{\cos {\theta _1}\cos {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}} + \dfrac{{\sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}}}}{{\dfrac{{\cos {\theta _1}\cos {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}} - \dfrac{{\sin {\theta _1}\sin {\theta _2}}}{{\cos {\theta _1}\cos {\theta _2}}}}} \\\ \Rightarrow \dfrac{{1 + \dfrac{{\sin {\theta _1}}}{{\cos {\theta _1}}} \times \dfrac{{\sin {\theta _2}}}{{\cos {\theta _2}}}}}{{1 - \dfrac{{\sin {\theta _1}}}{{\cos {\theta _1}}} \times \dfrac{{\sin {\theta _2}}}{{\cos {\theta _2}}}}} \\\

Using the tangential property tanθ1=sinθ1cosθ1\tan {\theta _1} = \dfrac{{\sin {\theta _1}}}{{\cos {\theta _1}}} and tanθ2=sinθ2cosθ2\tan {\theta _2} = \dfrac{{\sin {\theta _2}}}{{\cos {\theta _2}}} in the above equation, we get
1+tanθ1tanθ21tanθ1tanθ2\Rightarrow \dfrac{{1 + \tan {\theta _1}\tan {\theta _2}}}{{1 - \tan {\theta _1}\tan {\theta _2}}}

Substituting the value tanθ1=kcotθ2\tan {\theta _1} = k\cot {\theta _2} in the above equation, we get
1+kcotθ1tanθ21kcotθ1tanθ2\Rightarrow \dfrac{{1 + k\cot {\theta _1}\tan {\theta _2}}}{{1 - k\cot {\theta _1}\tan {\theta _2}}}

Using the tangential property, cotAtanA=1\cot A\tan A = 1in the above equation, we get
1+k1k\Rightarrow \dfrac{{1 + k}}{{1 - k}}

Hence, option A is correct.

Note:
In this problem, students need to be thorough with the basic trigonometric value of different ratios, such as sine, cosine, tangent, their properties and the ways to use them to solve it. Be careful while using the properties in the given problem as there are two angles θ1{\theta _1} and θ2{\theta _2}.