Solveeit Logo

Question

Question: If \(\tan (\pi \cos \theta ) = \cot (\pi \sin \theta )\) then a value of \(\cos (\theta - \dfrac{\pi...

If tan(πcosθ)=cot(πsinθ)\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ) then a value of cos(θπ4)\cos (\theta - \dfrac{\pi }{4}) among the following is
A. 122\dfrac{1}{{2\sqrt 2 }}
B. 12\dfrac{1}{{\sqrt 2 }}
C. 12\dfrac{1}{2}
D. 14\dfrac{1}{4}

Explanation

Solution

Hint: Here we will simplify the given equation by converting any one of the expression into same trigonometric function i.e converting cot to tan trigonometric function in L.H.S by using the formulae of trigonometry.Simplify the equation further and converting it into cos(θπ4)\cos (\theta - \dfrac{\pi }{4}) by using standard formula and then the value is computed.

Complete step-by-step answer:
Given equation is tan(πcosθ)=cot(πsinθ)\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ).
We know that cot(θ)=tan(π2θ)\cot (\theta ) = \tan \left( {\dfrac{\pi }{2} - \theta } \right).
Hence, cot(πsinθ)=tan(π2πsinθ)\cot (\pi \sin \theta ) = \tan \left( {\dfrac{\pi }{2} - \pi \sin \theta } \right).
Substituting above value in given equation,we get
tan(πcosθ)=tan(π2πsinθ)\tan (\pi \cos \theta ) = \tan \left( {\dfrac{\pi }{2} - \pi \sin \theta } \right)
Now we can cancel out tan from both sides
πcosθ=π2πsinθ\pi \cos \theta = \dfrac{\pi }{2} - \pi \sin \theta .
On simplifying, we get
cosθ+sinθ=12\cos \theta + \sin \theta = \dfrac{1}{2}.
Multiplying 12\dfrac{1}{{\sqrt 2 }}with above equation we get,
12cosθ+12sinθ=12×12\dfrac{1}{{\sqrt 2 }}\cos \theta + \dfrac{1}{{\sqrt 2 }}\sin \theta = \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}
As we know cosπ4=12\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }} and sinπ4=12\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}.
On replacing the equation with above value we get
cosπ4.cosθ+sinπ4.sinθ=122\cos \dfrac{\pi }{4}.\cos \theta + \sin \dfrac{\pi }{4}.\sin \theta = \dfrac{1}{{2\sqrt 2 }}
We know that cos(θπ4)=cosθ.cosπ4+sinθ.sinπ4.(1)\cos (\theta - \dfrac{\pi }{4}) = \cos \theta .\cos \dfrac{\pi }{4} + \sin \theta .\sin \dfrac{\pi }{4}. \to (1)
Therefore, using equation (1) we have
cos(θπ4)=122\cos (\theta - \dfrac{\pi }{4}) = \dfrac{1}{{2\sqrt 2 }}.
Hence the correct option is A.

Note: In these type of questions we have to know the general formula of trigonometry.Students should remember trigonometric identities and important formulas for solving these type of problems.Try to convert the equations or simplify to standard formula to get the desired answer.We can also convert tan to cot trigonometric function in L.H.S and further simplifying it,we will get same answer.