Solveeit Logo

Question

Question: If \(\tan \left( {x + y} \right) + \tan \left( {x - y} \right) = 1\) , then find \(\dfrac{{dy}}{{dx}...

If tan(x+y)+tan(xy)=1\tan \left( {x + y} \right) + \tan \left( {x - y} \right) = 1 , then find dydx\dfrac{{dy}}{{dx}} .

Explanation

Solution

It is asked to find dydx\dfrac{{dy}}{{dx}} of the equation tan(x+y)+tan(xy)=1\tan \left( {x + y} \right) + \tan \left( {x - y} \right) = 1 .
So, differentiate the whole equation with respect to x.
Now, on applying chain rule for differentiation in L.H.S. of the equation, we will get dydx\dfrac{{dy}}{{dx}} .

Complete step-by-step answer:
The given equation is tan(x+y)+tan(xy)=1\tan \left( {x + y} \right) + \tan \left( {x - y} \right) = 1 .
Now, we are asked to find dydx\dfrac{{dy}}{{dx}} .
For that, we will differentiate the given equation with respect to x.
Now, differentiating with respect to x,
ddx(tan(x+y)+tan(xy))=ddx(1) ddxtan(x+y)+ddxtan(xy)=0  \therefore \dfrac{d}{{dx}}\left( {\tan \left( {x + y} \right) + \tan \left( {x - y} \right)} \right) = \dfrac{d}{{dx}}\left( 1 \right) \\\ \therefore \dfrac{d}{{dx}}\tan \left( {x + y} \right) + \dfrac{d}{{dx}}\tan \left( {x - y} \right) = 0 \\\
Here, we will have to use chain rules for differentiating.
sec2(x+y)[1+dydx]+sec2(xy)[1dydx]=0 sec2(x+y)+sec2(x+y)dydx+sec2(xy)sec2(xy)dydx=0 sec2(x+y)dydxsec2(xy)dydx=[sec2(x+y)+sec2(xy)] [sec2(x+y)sec2(xy)]dydx=[sec2(x+y)+sec2(xy)] dydx=[sec2(x+y)+sec2(xy)][sec2(x+y)sec2(xy)] dydx=[sec2(x+y)+sec2(xy)][sec2(xy)sec2(x+y)]  \Rightarrow {\sec ^2}\left( {x + y} \right)\left[ {1 + \dfrac{{dy}}{{dx}}} \right] + {\sec ^2}\left( {x - y} \right)\left[ {1 - \dfrac{{dy}}{{dx}}} \right] = 0 \\\ \Rightarrow {\sec ^2}\left( {x + y} \right) + {\sec ^2}\left( {x + y} \right)\dfrac{{dy}}{{dx}} + {\sec ^2}\left( {x - y} \right) - {\sec ^2}\left( {x - y} \right)\dfrac{{dy}}{{dx}} = 0 \\\ \Rightarrow {\sec ^2}\left( {x + y} \right)\dfrac{{dy}}{{dx}} - {\sec ^2}\left( {x - y} \right)\dfrac{{dy}}{{dx}} = - \left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right] \\\ \Rightarrow \left[ {{{\sec }^2}\left( {x + y} \right) - {{\sec }^2}\left( {x - y} \right)} \right]\dfrac{{dy}}{{dx}} = - \left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right] \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right]}}{{\left[ {{{\sec }^2}\left( {x + y} \right) - {{\sec }^2}\left( {x - y} \right)} \right]}} \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right]}}{{\left[ {{{\sec }^2}\left( {x - y} \right) - {{\sec }^2}\left( {x + y} \right)} \right]}} \\\
Thus, we get dydx=[sec2(x+y)+sec2(xy)][sec2(xy)sec2(x+y)]\dfrac{{dy}}{{dx}} = \dfrac{{\left[ {{{\sec }^2}\left( {x + y} \right) + {{\sec }^2}\left( {x - y} \right)} \right]}}{{\left[ {{{\sec }^2}\left( {x - y} \right) - {{\sec }^2}\left( {x + y} \right)} \right]}} .

Note: Chain rule for differentiation:
To find the derivative of a composite function, we use chain rule. The chain rule tells us how to differentiate composite functions.
Let us consider a composite function f(g(x))f\left( {g\left( x \right)} \right) . Here, g is the function within the function f, so, we will call f as outer function and g as inner function.
Now, to find its derivative, first we differentiate the outer function i.e. function f and then add the derivative of the inner function i.e. function g to it to get the derivative of the composite function.
ddx[f(g(x))]=ddxf(g(x))+ddxg(x) =f(g(x))+g(x)  \dfrac{d}{{dx}}\left[ {f\left( {g\left( x \right)} \right)} \right] = \dfrac{d}{{dx}}f\left( {g\left( x \right)} \right) + \dfrac{d}{{dx}}g\left( x \right) \\\ = f'\left( {g\left( x \right)} \right) + g'\left( x \right) \\\