Solveeit Logo

Question

Question: If \(\tan \left( {{\text{A}} + {\text{B}}} \right) = \sqrt 3 \) and \(\tan \left( {{\text{A}} - {\te...

If tan(A+B)=3\tan \left( {{\text{A}} + {\text{B}}} \right) = \sqrt 3 and tan(AB)=13\tan \left( {{\text{A}} - {\text{B}}} \right) = \dfrac{1}{{\sqrt 3 }} ; 0<A+B900^\circ < {\text{A}} + {\text{B}} \leqslant {\text{90}}^\circ ; A>B{\text{A}} > {\text{B}} , find A{\text{A}} and B{\text{B}} .

Explanation

Solution

We know that the value of tan60\tan 60^\circ is 3\sqrt 3 and we also know that the value of tan30\tan 30^\circ is 13\dfrac{1}{{\sqrt 3 }} . Now, we will put tan60\tan 60^\circ in place of 3\sqrt 3 and tan30\tan 30^\circ in place of 13\dfrac{1}{{\sqrt 3 }} and then we will simplify it. In this question we will get two equations and we have to find two unknown variables which we can easily find with the help of the two equations we got.

Complete step-by-step solution:
The information given in the question is tan(A+B)=3\tan \left( {{\text{A}} + {\text{B}}} \right) = \sqrt 3 and tan(AB)=13\tan \left( {{\text{A}} - {\text{B}}} \right) = \dfrac{1}{{\sqrt 3 }}.
We know that the value of tan60\tan 60^\circ is 3\sqrt 3 and the value of tan30\tan 30^\circ is 13\dfrac{1}{{\sqrt 3 }}
Therefore, we can write tan(A+B)=3\tan \left( {{\text{A}} + {\text{B}}} \right) = \sqrt 3 as:
tan(A+B)=3 tan(A+B)=tan60 \tan \left( {{\text{A}} + {\text{B}}} \right) = \sqrt 3 \\\ \Rightarrow \tan \left( {{\text{A}} + {\text{B}}} \right) = \tan 60^\circ
Now, we can write (A+B)=60..(1)\left( {{\text{A}} + {\text{B}}} \right) = 60^\circ ……………..(1)
Similarly, we can write tan(AB)=13\tan \left( {{\text{A}} - {\text{B}}} \right) = \dfrac{1}{{\sqrt 3 }} as:
tan(AB)=13 tan(AB)=tan30 \tan \left( {{\text{A}} - {\text{B}}} \right) = \dfrac{1}{{\sqrt 3 }} \\\ \Rightarrow \tan \left( {{\text{A}} - {\text{B}}} \right) = \tan 30^\circ
Hence, we can write (AB)=30...(2)\left( {{\text{A}} - {\text{B}}} \right) = 30^\circ ……………...(2)
Now, we have two equations and two unknown variables. Therefore we can easily find the value of angle A{\text{A}} and B{\text{B}} with the help of equation (1)(1) and (2)(2)
Now, to find the value of angle A{\text{A}} we will add equation (1)(1) and (2)(2) . Therefore, we will get:
(A+B)+(AB)=60+30 2A=90 A=45 \left( {{\text{A}} + {\text{B}}} \right) + \left( {{\text{A}} - {\text{B}}} \right) = 60^\circ + 30^\circ \\\ \Rightarrow 2{\text{A}} = 90^\circ \\\ \Rightarrow {\text{A}} = 45^\circ
Therefore, by adding equation (1)(1) and (2)(2) we got the value of angle A{\text{A}}
Now, to find the value of angle B{\text{B}} we will subtract equation (2)(2) from equation (1)(1) . Therefore, we can write:
(A+B)(AB)=6030 2B=30 B=15 \left( {{\text{A}} + {\text{B}}} \right) - \left( {{\text{A}} - {\text{B}}} \right) = 60^\circ - 30^\circ \\\ \Rightarrow 2{\text{B}} = 30^\circ \\\ \Rightarrow {\text{B}} = 15^\circ

Hence, the answer is the value of angle A=45{\text{A}} = 45^\circ and the value of angle B=15{\text{B}} = 15^\circ .

Note: The other important things are the formula of sin\sin , cos\cos and tan\tan which we need to memorize.
sinA = OppositeHypotenuse\sin {\text{A = }}\dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}}
cosA = AdjacentHypotenuse\cos {\text{A = }}\dfrac{{{\text{Adjacent}}}}{{{\text{Hypotenuse}}}}
tanA = OppositeAdjacent\tan {\text{A = }}\dfrac{{{\text{Opposite}}}}{{{\text{Adjacent}}}}
cosecA = HypotenuseOpposite\cos ec {\text{A = }}\dfrac{{{\text{Hypotenuse}}}}{{{\text{Opposite}}}}
secA = HypotenuseAdjacent\sec {\text{A = }}\dfrac{{{\text{Hypotenuse}}}}{{{\text{Adjacent}}}}
cotA = AdjacentOpposite\cot {\text{A = }}\dfrac{{{\text{Adjacent}}}}{{{\text{Opposite}}}}