Solveeit Logo

Question

Question: If \(\tan \left( {{\sec }^{-1}}x \right)=\sin \left( {{\cos }^{-1}}\dfrac{1}{\sqrt{5}} \right)\) , t...

If tan(sec1x)=sin(cos115)\tan \left( {{\sec }^{-1}}x \right)=\sin \left( {{\cos }^{-1}}\dfrac{1}{\sqrt{5}} \right) , then x=x=
A.±35\pm \dfrac{3}{\sqrt{5}}
B.±53\pm \dfrac{\sqrt{5}}{3}
C.±35\pm \dfrac{\sqrt{3}}{5}
D.None of these

Explanation

Solution

Hint: Express sec1x{{\sec }^{-1}}x inside tan function to tan1{{\tan }^{-1}} by making a right angles triangle using secθ=(HypotenuseBase)\sec \theta =\left( \dfrac{\text{Hypotenuse}}{\text{Base}} \right) . Use Pythagoras theorem (Hypotenuse)2=(Base)2+(Perpendicular)2{{\left( \text{Hypotenuse} \right)}^{2}}={{\left( \text{Base} \right)}^{2}}+{{\left( \text{Perpendicular} \right)}^{2}} to get the other side of triangle. Now, express sec1{{\sec }^{-1}} to tan1{{\tan }^{-1}} using tanθ=PerpendicularBase\tan \theta =\dfrac{\text{Perpendicular}}{\text{Base}} . Similarly, make a triangle using cos115{{\cos }^{-1}}\dfrac{1}{\sqrt{5}} for R.H.S by following result:
cosθ=BaseHypotenuse\cos \theta =\dfrac{Base}{Hypotenuse}
Use Pythagoras theorem to get the other side of this triangle as well. Now, convert cos1{{\cos }^{-1}} to sin1{{\sin }^{-1}} function using sinθ=PerpendicularHypotenuse\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}
Use the following results: tan(tan1θ)=θ\tan \left( {{\tan }^{-1}}\theta \right)=\theta and sin(sin1θ)=θ\sin \left( {{\sin }^{-1}}\theta \right)=\theta

Here, we have to determine value of x, if tan(sec1x)=sin(cos115)\tan \left( {{\sec }^{-1}}x \right)=\sin \left( {{\cos }^{-1}}\dfrac{1}{\sqrt{5}} \right) ……………………(i)

Complete step-by-step answer:
So, let us simplify LHS and RHS of the above equation individually. So, LHS of the equation (i) is given as
LHS=tan(sec1x)\Rightarrow LHS=\tan \left( {{\sec }^{-1}}x \right) ………………………………………(ii)
Now, as we know the trigonometric relation for secθ\sec \theta is given as
secθ=(HypotenuseBase)\Rightarrow \sec \theta =\left( \dfrac{\text{Hypotenuse}}{\text{Base}} \right)
θ=sec1(Hypotenuse Base)\Rightarrow \theta ={{\sec }^{-1}}\left( \dfrac{\text{Hypotenuse }}{\text{Base}} \right) ………………………………………..(iii)
Now, we can draw a right angle triangle with the help of expression sec1x{{\sec }^{-1}}x inside tan of equation (ii) and using equation (iii) as well.
So, we can suppose angle θ\theta in a right angle triangle using relation
θ=sec1(x1)\theta ={{\sec }^{-1}}\left( \dfrac{x}{1} \right) ……………………………………(iv)
Hence, a right angled triangle with Hypotenuse =x=x and Base =1=1 can be drawn as

Now, as we know the Pythagoras theorem for a right angled triangle is given as: -
(Hypotenuse)2=(Base)2+(Perpendicular)2{{\left( \text{Hypotenuse} \right)}^{2}}={{\left( \text{Base} \right)}^{2}}+{{\left( \text{Perpendicular} \right)}^{2}} …………………………………….(v)
So, we get the above equation with help of ΔABC\Delta ABC as
(AC)2=(BC)2+(AB)2\Rightarrow {{\left( AC \right)}^{2}}={{\left( BC \right)}^{2}}+{{\left( AB \right)}^{2}}
x2=12+(AB)2\Rightarrow {{x}^{2}}={{1}^{2}}+{{\left( AB \right)}^{2}}
(AB)2=x21\Rightarrow {{\left( AB \right)}^{2}}={{x}^{2}}-1
Taking square root to both the sides, we get
AB=x21\Rightarrow AB=\sqrt{{{x}^{2}}-1}
Now, as we know tanθ=PerpendicularBase\tan \theta =\dfrac{\text{Perpendicular}}{\text{Base}}
Hence, we get the value of tanθ\tan \theta from ΔABC\Delta ABC as: -
tanθ=ABBC=x211\Rightarrow \tan \theta =\dfrac{AB}{BC}=\dfrac{\sqrt{{{x}^{2}}-1}}{1}
θ=tan1(x21)\Rightarrow \theta ={{\tan }^{-1}}\left( \sqrt{{{x}^{2}}-1} \right) ………………………………..(vi)
Now, we can get from equation (iv) and (vi) that
sec1x=tan1(x21){{\sec }^{-1}}x={{\tan }^{-1}}\left( \sqrt{{{x}^{2}}-1} \right)
Hence, equation (ii) can be written as
LHS=tan(tan1x21)\Rightarrow LHS=\tan \left( {{\tan }^{-1}}\sqrt{{{x}^{2}}-1} \right) ………………………………………(vii)
Now, as we know tan(tan1θ)=θ\tan \left( {{\tan }^{-1}}\theta \right)=\theta …………………………………….(viii)
Hence, we get equation (vii) as
LHS =x21=\sqrt{{{x}^{2}}-1} ………………………………….(ix)
Now, RHS of the equation (i) is given as
RHS=sin(cos1(15))\Rightarrow RHS=\sin \left( {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{5}} \right) \right) ……………………………………(x)
Now, as we know cosθ=BaseHypotenuse\cos \theta =\dfrac{Base}{Hypotenuse} θ=cos1(BaseHypotenuse)\Rightarrow \theta ={{\cos }^{-1}}\left( \dfrac{Base}{Hypotenuse} \right) …………………….(xi)
So, on comparing the above equation with the term cos1(15){{\cos }^{-1}}\left( \dfrac{1}{\sqrt{5}} \right) inside the function sin of the equation (x). We get θ=cos1(15)\theta ={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{5}} \right) …………………………….(xii)
So, we can draw right angle triangle with Base =1=1, Hypotenuse =5=\sqrt{5}
Hence, we can draw a triangle as

Now, using equation (v), we get
(AC)2=(AB)2+(BC)2\Rightarrow {{\left( AC \right)}^{2}}={{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}}
(5)2=(AB)2+1\Rightarrow {{\left( \sqrt{5} \right)}^{2}}={{\left( AB \right)}^{2}}+1
(AB)2=51=4\Rightarrow {{\left( AB \right)}^{2}}=5-1=4
AB=2\Rightarrow AB=2
Hence, we know sinθ\sin \theta is defined as sinθ=PerpendicularHypotenuse=ABAC\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}=\dfrac{AB}{AC}
sinθ=25\sin \theta =\dfrac{2}{\sqrt{5}} θ=sin1(25)\Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{2}{\sqrt{5}} \right) ………………………………(xiii)
Hence, we can rewrite equation (x) using equation (xii) and (xiii) as
RHS =sin(sin1(25))=\sin \left( {{\sin }^{-1}}\left( \dfrac{2}{\sqrt{5}} \right) \right)
Now, as we know sin(sin1θ)=θ\sin \left( {{\sin }^{-1}}\theta \right)=\theta
So, we get RHS =25=\dfrac{2}{\sqrt{5}} ……………………………………..(xiv)
Now, we can rewrite equation (i) using equations (ix) and (xiv) as
x21=25\Rightarrow \sqrt{{{x}^{2}}-1}=\dfrac{2}{\sqrt{5}}
On squaring both the sides of the above equation, we get
x21=45\Rightarrow {{x}^{2}}-1=\dfrac{4}{5}
x2=1+45=95\Rightarrow {{x}^{2}}=1+\dfrac{4}{5}=\dfrac{9}{5}
x2=95\Rightarrow {{x}^{2}}=\dfrac{9}{5}
Taking square root on both the sides of the above equation, we get
x=±35\Rightarrow x=\pm \dfrac{3}{\sqrt{5}}
Hence, option (a) is the correct answer.

Note: One need to be careful with the identities tan(tan1x)=x\tan \left( {{\tan }^{-1}}x \right)=x and sin(sin1x)=x\sin \left( {{\sin }^{-1}}x \right)=x. One may confuse with the identities of sin(sin1x)\sin \left( {{\sin }^{-1}}x \right) and tan(tan1x)\tan \left( {{\tan }^{-1}}x \right) which will not always be x. So, be careful with them. Don’t confuse yourself with these relations.
One may use direct identities to convert sec1x{{\sec }^{-1}}x to tan1{{\tan }^{-1}} and cos1{{\cos }^{-1}} function to sin1{{\sin }^{-1}} . These are given as
sec1x=tan1x21{{\sec }^{-1}}x={{\tan }^{-1}}\sqrt{{{x}^{2}}-1}
cos1x=sin11x2{{\cos }^{-1}}x={{\sin }^{-1}}\sqrt{1-{{x}^{2}}}
So, we do not need to make a right angle triangle to get solve the problem instead, we can use the above identities as well.