Question
Question: If \(\tan \left( {\pi \cos \theta } \right) = \cot \left( {\pi \sin \theta } \right)\) then prove th...
If tan(πcosθ)=cot(πsinθ) then prove that cos(θ−4π)=±221.
Solution
1. Change the R.H.S trigonometric ratio in its complementary ratio, by using identity:
cotθ=tan(±2π−θ).
2. Then compare the phases of both L.H.S and R.H.S, by using identity:
When, tanθ=tanα
θ=nπ+α
Where, α∈[−2π,2π] and n∈Z.
3. Then try to make cos(θ−4π) on the L.H.S.
Complete step-by-step answer:
It is given that,
tan(πcosθ)=cot(πsinθ)
⇒tan(πcosθ)=tan(±2π−πsinθ) (∵tan(±2π−θ)=cotθ)
Now. As we know the general solution of the equation:
tanθ=tanα is given by:
θ=nπ+α
Where, α∈[−2π,2π] and n∈Z.
So, here in the above equation we get:
⇒πcosθ=nπ+(±2π−πsinθ).................................[1]
Where,
2−π⩽2π−sinθ⩽2π or 2−π⩽−2π−sinθ⩽2π
⇒−π⩽−πsinθ⩽0 or 0⩽ - πsinθ⩽π ⇒0⩽sinθ⩽1 or - 1⩽sinθ⩽0 ⇒ - 1⩽sinθ⩽1 ⇒θ∈[−2π,2π]
Now, dividing equation 1 by π, we get:
⇒cosθ=n±21−sinθ ⇒cosθ+sinθ=n±21
For θ∈[−2π,2π]the value of cosθ+sinθlies between −2 and 2.
Therefore, n can only be 0.
⇒cosθ+sinθ=±21
Dividing both sides by 2, we get:
⇒21cosθ+21sinθ=±221 ⇒cos4πcosθ+sin4πsinθ=±221 [cos4π=sin4π=21]
Using the identity:
cosAcosB+sinAsinB=cos(A−B)we get,
⇒cos(4π−θ)=±221
Hence, proved.
Note: Here, in the above question the range for θ was not given that’s why when we calculated we got θ∈[−2π,2π].
Since, the value of tanθ is positive in both I quadrant and II quadrant, therefore it is important to take ± sign in the identity:
cotθ=tan(±2π−θ).