Solveeit Logo

Question

Question: If \(\tan \left( {\pi \cos \theta } \right) = \cot \left( {\pi \sin \theta } \right)\) then prove th...

If tan(πcosθ)=cot(πsinθ)\tan \left( {\pi \cos \theta } \right) = \cot \left( {\pi \sin \theta } \right) then prove that cos(θπ4)=±122\cos \left( {\theta - \dfrac{\pi }{4}} \right) = \pm \dfrac{1}{{2\sqrt 2 }}.

Explanation

Solution

1. Change the R.H.S trigonometric ratio in its complementary ratio, by using identity:
cotθ=tan(±π2θ)\cot \theta = \tan \left( { \pm \dfrac{\pi }{2} - \theta } \right).
2. Then compare the phases of both L.H.S and R.H.S, by using identity:
When, tanθ=tanα\tan \theta = \tan \alpha
θ=nπ+α\theta = n\pi + \alpha
Where, α[π2,π2]\alpha \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] and nZn \in Z.
3. Then try to make cos(θπ4)\cos \left( {\theta - \dfrac{\pi }{4}} \right) on the L.H.S.

Complete step-by-step answer:
It is given that,
tan(πcosθ)=cot(πsinθ)\tan \left( {\pi \cos \theta } \right) = \cot \left( {\pi \sin \theta } \right)
tan(πcosθ)=tan(±π2πsinθ) (tan(±π2θ)=cotθ)\Rightarrow \tan (\pi \cos \theta ) = \tan \left( { \pm \dfrac{\pi }{2} - \pi \sin \theta } \right){\text{ }}\left( {\because \tan \left( { \pm \dfrac{\pi }{2} - \theta } \right) = \cot \theta } \right)
Now. As we know the general solution of the equation:
tanθ=tanα\tan \theta = \tan \alpha is given by:
θ=nπ+α\theta = n\pi + \alpha
Where, α[π2,π2]\alpha \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] and nZn \in Z.
So, here in the above equation we get:
πcosθ=nπ+(±π2πsinθ).................................[1]\Rightarrow \pi \cos \theta = n\pi + \left( { \pm \dfrac{\pi }{2} - \pi \sin \theta } \right).................................[1]
Where,
π2π2sinθπ2 or π2π2sinθπ2\dfrac{{ - \pi }}{2} \leqslant \dfrac{\pi }{2} - \sin \theta \leqslant \dfrac{\pi }{2}{\text{ or }}\dfrac{{ - \pi }}{2} \leqslant - \dfrac{\pi }{2} - \sin \theta \leqslant \dfrac{\pi }{2}
ππsinθ0 or 0 - πsinθπ 0sinθ1 or - 1sinθ0  - 1sinθ1 θ[π2,π2]  \Rightarrow - \pi \leqslant - \pi \sin \theta \leqslant 0{\text{ or 0}} \leqslant {\text{ - }}\pi {\text{sin}}\theta \leqslant \pi \\\ \Rightarrow 0 \leqslant \sin \theta \leqslant 1{\text{ or - 1}} \leqslant {\text{sin}}\theta \leqslant {\text{0}} \\\ \Rightarrow {\text{ - 1}} \leqslant {\text{sin}}\theta \leqslant {\text{1}} \\\ \Rightarrow \theta \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right] \\\
Now, dividing equation 1 by π\pi , we get:
cosθ=n±12sinθ cosθ+sinθ=n±12  \Rightarrow \cos \theta = n \pm \dfrac{1}{2} - \sin \theta \\\ \Rightarrow \cos \theta + \sin \theta = n \pm \dfrac{1}{2} \\\
For θ[π2,π2]\theta \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]the value of cosθ+sinθ\cos \theta + \sin \theta lies between 2- \sqrt 2 and 2\sqrt 2 .
Therefore, n can only be 0.
cosθ+sinθ=±12\Rightarrow \cos \theta + \sin \theta = \pm \dfrac{1}{2}
Dividing both sides by 2\sqrt 2 , we get:
12cosθ+12sinθ=±122 cosπ4cosθ+sinπ4sinθ=±122 [cosπ4=sinπ4=12]  \Rightarrow \dfrac{1}{{\sqrt 2 }}\cos \theta + \dfrac{1}{{\sqrt 2 }}\sin \theta = \pm \dfrac{1}{{2\sqrt 2 }} \\\ \Rightarrow \cos \dfrac{\pi }{4}\cos \theta + \sin \dfrac{\pi }{4}\sin \theta = \pm \dfrac{1}{{2\sqrt 2 }}{\text{ [cos}}\dfrac{\pi }{4} = \sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}] \\\
Using the identity:
cosAcosB+sinAsinB=cos(AB)\cos A\cos B + \sin A\sin B = \cos (A - B)we get,
cos(π4θ)=±122\Rightarrow \cos \left( {\dfrac{\pi }{4} - \theta } \right) = \pm \dfrac{1}{{2\sqrt 2 }}
Hence, proved.

Note: Here, in the above question the range for θ\theta was not given that’s why when we calculated we got θ[π2,π2]\theta \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right].
Since, the value of tanθ\tan \theta is positive in both I quadrant and II quadrant, therefore it is important to take ±\pm sign in the identity:
cotθ=tan(±π2θ)\cot \theta = \tan \left( { \pm \dfrac{\pi }{2} - \theta } \right).