Solveeit Logo

Question

Question: If \(\tan \left( {\cot x} \right) = \cot \left( {\tan x} \right)\) , then A.\(\sin 2x = \dfrac{4}{...

If tan(cotx)=cot(tanx)\tan \left( {\cot x} \right) = \cot \left( {\tan x} \right) , then
A.sin2x=4(2n+1)π\sin 2x = \dfrac{4}{{\left( {2n + 1} \right)\pi }}
B.sin2x=4π\sin 2x = \dfrac{4}{\pi }
C.sin2x=1(2n+1)\sin 2x = \dfrac{1}{{\left( {2n + 1} \right)}}
D.sin2x=nπ\sin 2x = n\pi

Explanation

Solution

We can change the cot function on the RHS of the equation to tan by using the complementary angle. Then we can take inverses on both sides. Then we can simplify the expression obtained using trigonometric identities. Then we can write the equation in terms of sin2x\sin 2x to get the required answer.

Complete step-by-step answer:
We have the equation tan(cotx)=cot(tanx)\tan \left( {\cot x} \right) = \cot \left( {\tan x} \right)
We know that tan(π2θ)=cotθ\tan \left( {\dfrac{\pi }{2} - \theta } \right) = \cot \theta .
Here θ=tanx\theta = \tan x ,
So, the equation will become
tan(cotx)=tan(π2tanx)\Rightarrow \tan \left( {\cot x} \right) = \tan \left( {\dfrac{\pi }{2} - \tan x} \right)
We know that tan function is periodic in the interval nπn\pi . So, we can write
tan(cotx)=tan(nπ+π2tanx)\Rightarrow \tan \left( {\cot x} \right) = \tan \left( {n\pi + \dfrac{\pi }{2} - \tan x} \right)
Now we can take tan inverse on both sides,
tan1tan(cotx)=tan1tan(nπ+π2tanx)\Rightarrow {\tan ^{ - 1}}\tan \left( {\cot x} \right) = {\tan ^{ - 1}}\tan \left( {n\pi + \dfrac{\pi }{2} - \tan x} \right)
We know that tan and tan inverse are inverse operations, so we can cancel them.
cotx=nπ+π2tanx\Rightarrow \cot x = n\pi + \dfrac{\pi }{2} - \tan x
On taking the terms containing x to one side, we get
cotx+tanx=nπ+π2\Rightarrow \cot x + \tan x = n\pi + \dfrac{\pi }{2}
We know that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} and cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}} . So, the LHS will become
cosxsinx+sinxcosx=nπ+π2\Rightarrow \dfrac{{\cos x}}{{\sin x}} + \dfrac{{\sin x}}{{\cos x}} = n\pi + \dfrac{\pi }{2}
On taking the LCM of the LHS, we get
cos2x+sin2xsinxcosx=nπ+π2\Rightarrow \dfrac{{{{\cos }^2}x + {{\sin }^2}x}}{{\sin x\cos x}} = n\pi + \dfrac{\pi }{2}
We know that cos2x+sin2x=1co{s^2}x + {\sin ^2}x = 1 . So, the equations will become
1sinxcosx=nπ+π2\Rightarrow \dfrac{1}{{\sin x\cos x}} = n\pi + \dfrac{\pi }{2}
Now we can divide throughout with 2.
12sinxcosx=nπ2+π4\Rightarrow \dfrac{1}{{2\sin x\cos x}} = \dfrac{{n\pi }}{2} + \dfrac{\pi }{4}
We know that 2sinxcosx=sin2x2\sin x\cos x = \sin 2x . So, the denominator will become
1sin2x=nπ2+π4\Rightarrow \dfrac{1}{{\sin 2x}} = \dfrac{{n\pi }}{2} + \dfrac{\pi }{4}
We can take the LCM in the RHS.
1sin2x=2nπ+π4\Rightarrow \dfrac{1}{{\sin 2x}} = \dfrac{{2n\pi + \pi }}{4}
Taking π\pi common, we get
1sin2x=(2n+1)π4\Rightarrow \dfrac{1}{{\sin 2x}} = \dfrac{{\left( {2n + 1} \right)\pi }}{4}
On taking reciprocal on both sides, we get
sin2x=4(2n+1)π\Rightarrow \sin 2x = \dfrac{4}{{\left( {2n + 1} \right)\pi }}
Therefore, the required relation is sin2x=4(2n+1)π\sin 2x = \dfrac{4}{{\left( {2n + 1} \right)\pi }} .
So, the correct answer is option A.

Note: We must change the cot function to tan function using complementary angles, not by taking the reciprocal. We must consider the general solution of tan inverse. As the tan function repeats its value in the period π\pi , we can add the term nπn\pi to the function before taking the inverse. We must convert the tan and cot in terms of sin and cos function for simplification. Before taking the inverse, we must simplify the RHS to one term to avoid errors.