Solveeit Logo

Question

Question: If \(\tan \left( {\cot x} \right) = \cot \left( {\tan x} \right)\), then \(\sin 2x = \dfrac{4}{{\l...

If tan(cotx)=cot(tanx)\tan \left( {\cot x} \right) = \cot \left( {\tan x} \right), then
sin2x=4(2n+1)π\sin 2x = \dfrac{4}{{\left( {2n + 1} \right)\pi }}
sin2x=4π\sin 2x = \dfrac{4}{\pi }
sin2x=12n+1\sin 2x = \dfrac{1}{{2n + 1}}
sin2x=nπ\sin 2x = n\pi

Explanation

Solution

In this problem, we need to find the value of sin2x\sin 2x where we are provided with a trigonometric expression which is tan(cotx)=cot(tanx)\tan \left( {\cot x} \right) = \cot \left( {\tan x} \right). For this, first we will use the identity cot(α)=tan(π2α)\cot \left( \alpha \right) = \tan \left( {\dfrac{\pi }{2} - \alpha } \right). Then, we will use the result tanx=tanαx=nπ+α\tan x = \tan \alpha \Rightarrow x = n\pi + \alpha . Then, we will use some basic trigonometric identities.

Complete step-by-step solution:
In this problem, it is given that tan(cotx)=cot(tanx)(1)\tan \left( {\cot x} \right) = \cot \left( {\tan x} \right) \cdots \cdots \left( 1 \right).
Now we will use the identity cot(α)=tan(π2α)\cot \left( \alpha \right) = \tan \left( {\dfrac{\pi }{2} - \alpha } \right) on RHS of equation (1)\left( 1 \right).
Therefore, we get tan(cotx)=tan(π2tanx)(2)\tan \left( {\cot x} \right) = \tan \left( {\dfrac{\pi }{2} - \tan x} \right) \cdots \cdots \left( 2 \right).
Now we are going to use the result tanx=tanαx=nπ+α\tan x = \tan \alpha \Rightarrow x = n\pi + \alpha in equation (2)\left( 2 \right).
Therefore, we get cotx=nπ+π2tanx(3)\cot x = n\pi + \dfrac{\pi }{2} - \tan x \cdots \cdots \left( 3 \right).
Let us simplify the equation (3)\left( 3 \right). Therefore, we get cotx+tanx=nπ+π2(4)\cot x + \tan x = n\pi + \dfrac{\pi }{2} \cdots \cdots \left( 4 \right).
Now we need to find the value of sin2x\sin 2x.
Therefore, we will convert the equation (4)\left( 4 \right) in terms of sine and cosines.
For this, we will use some basic trigonometric identities. That is, we will use identities tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}} and cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}} on LHS of equation (4)\left( 4 \right).

Therefore, we get cosxsinx+sinxcosx=2nπ+π2(5)\dfrac{{\cos x}}{{\sin x}} + \dfrac{{\sin x}}{{\cos x}} = \dfrac{{2n\pi + \pi }}{2} \cdots \cdots \left( 5 \right)
Let us simplify the LHS and RHS of the equation (5)\left( 5 \right).
Therefore, we get (cosx)(cosx)+(sinx)(sinx)(sinx)(cosx)=(2n+1)π2\dfrac{{\left( {\cos x} \right)\left( {\cos x} \right) + \left( {\sin x} \right)\left( {\sin x} \right)}}{{\left( {\sin x} \right)\left( {\cos x} \right)}} = \dfrac{{\left( {2n + 1} \right)\pi }}{2}
cos2x+sin2x(sinx)(cosx)=(2n+1)π2(6)\Rightarrow \dfrac{{{{\cos }^2}x + {{\sin }^2}x}}{{\left( {\sin x} \right)\left( {\cos x} \right)}} = \dfrac{{\left( {2n + 1} \right)\pi }}{2} \cdots \cdots \left( 6 \right)
Now we are going to use the Pythagorean identity cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1 on the LHS of equation (6)\left( 6 \right).
Therefore, we get 1(sinx)(cosx)=(2n+1)π2\dfrac{1}{{\left( {\sin x} \right)\left( {\cos x} \right)}} = \dfrac{{\left( {2n + 1} \right)\pi }}{2}
(sinx)(cosx)=2(2n+1)π(7)\Rightarrow \left( {\sin x} \right)\left( {\cos x} \right) = \dfrac{2}{{\left( {2n + 1} \right)\pi }} \cdots \cdots \left( 7 \right)
Let us multiply by the number 22 on both sides of equation (7)\left( 7 \right).
Therefore, we get
2(sinx)(cosx)=4(2n+1)π(8)\Rightarrow2\left( {\sin x} \right)\left( {\cos x} \right) = \dfrac{4}{{\left( {2n + 1} \right)\pi }} \cdots \cdots \left( 8 \right)
Now we are going to use the formula 2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta on the LHS of equation (8)\Rightarrow \left( 8 \right). Therefore, we get sin2x=4(2n+1)π\sin 2x = \dfrac{4}{{\left( {2n + 1} \right)\pi }}

Hence the correct answer is option A .

Note: There are various distinct trigonometric identities. When trigonometric functions are involved in an equation then trigonometric identities are useful to solve that equation. We can use identities cosec2xcot2x=1\cos e{c^2}x - {\cot ^2}x = 1 and sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1 to solve many trigonometric problems. These identities are called Pythagorean identities.