Solveeit Logo

Question

Question: If \[\tan \left( A-B \right)=1,\sec \left( A+B \right)=\dfrac{2}{\sqrt{3}}\], then the smallest posi...

If tan(AB)=1,sec(A+B)=23\tan \left( A-B \right)=1,\sec \left( A+B \right)=\dfrac{2}{\sqrt{3}}, then the smallest positive value of B is
(a) 25π24\dfrac{25\pi }{24}
(b) 19π24\dfrac{19\pi }{24}
(c) 13π24\dfrac{13\pi }{24}
(d) 11π24\dfrac{11\pi }{24}

Explanation

Solution

Hint: Use trigonometric identities relating tangent and secant function to convert from one form to another. Use inverse trigonometric functions to find the value of angles which satisfy the given equations. Also use formulas for tangent of sum and difference of two angles to find the value of angle B.

Complete step-by-step answer:
We have the trigonometric equations tan(AB)=1,sec(A+B)=23\tan \left( A-B \right)=1,\sec \left( A+B \right)=\dfrac{2}{\sqrt{3}}. We have to calculate the smallest positive value of angle B which satisfies the above equations.
We know the trigonometric identity tan2x+1=sec2x{{\tan }^{2}}x+1={{\sec }^{2}}x.
Substituting x=A+Bx=A+B in the above equation, we have tan2(A+B)+1=sec2(A+B){{\tan }^{2}}\left( A+B \right)+1={{\sec }^{2}}\left( A+B \right).
We know that sec(A+B)=23\sec \left( A+B \right)=\dfrac{2}{\sqrt{3}}.
Thus, we have tan2(A+B)+1=sec2(A+B)=43{{\tan }^{2}}\left( A+B \right)+1={{\sec }^{2}}\left( A+B \right)=\dfrac{4}{3}.
Rearranging the terms of the above equation, we have tan2(A+B)=431{{\tan }^{2}}\left( A+B \right)=\dfrac{4}{3}-1.
Thus, we have tan2(A+B)=13{{\tan }^{2}}\left( A+B \right)=\dfrac{1}{3}.
So, we have tan(A+B)=±13\tan \left( A+B \right)=\pm \dfrac{1}{\sqrt{3}}.
We know that tan(AB)=1\tan \left( A-B \right)=1.
So, the smallest possible value of ABA-B is AB=tan1(1)=π4A-B={{\tan }^{-1}}\left( 1 \right)=\dfrac{\pi }{4}.
If tan(A+B)=13\tan \left( A+B \right)=\dfrac{1}{\sqrt{3}}, the smallest possible value of A+BA+B is A+B=tan1(13)=π6A+B={{\tan }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right)=\dfrac{\pi }{6}.
We know that AB=π4A-B=\dfrac{\pi }{4} and A+B=π6A+B=\dfrac{\pi }{6}. Subtracting the first equation from the second one, we have (A+B)(AB)=π6π4\left( A+B \right)-\left( A-B \right)=\dfrac{\pi }{6}-\dfrac{\pi }{4}.
Thus, we have 2B=π12B=π242B=\dfrac{-\pi }{12}\Rightarrow B=\dfrac{-\pi }{24}.
If tan(A+B)=13\tan \left( A+B \right)=\dfrac{-1}{\sqrt{3}}, the smallest possible value of A+BA+B is A+B=tan1(13)=11π6A+B={{\tan }^{-1}}\left( \dfrac{-1}{\sqrt{3}} \right)=\dfrac{11\pi }{6}.
We know that AB=π4A-B=\dfrac{\pi }{4} and A+B=11π6A+B=\dfrac{11\pi }{6}. Subtracting the first equation from the second one, we have (A+B)(AB)=11π6π4\left( A+B \right)-\left( A-B \right)=\dfrac{11\pi }{6}-\dfrac{\pi }{4}.
Thus, we have 2B=19π12B=19π242B=\dfrac{19\pi }{12}\Rightarrow B=\dfrac{19\pi }{24}.
Hence, the smallest positive value of angle B is B=19π24B=\dfrac{19\pi }{24}, which is option (b).

Note: We can also solve this question by expanding the equations using the trigonometric functions tan(x+y)=tanx+tany1tanxtany\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y} and tan(xy)=tanxtany1+tanxtany\tan \left( x-y \right)=\dfrac{\tan x-\tan y}{1+\tan x\tan y} and then simplifying the equations to get smallest positive value of angle B. It’s also necessary to keep in mind that we must consider only positive values of angle B. We can check if the calculated values of angles are correct or not by substituting the value of angles in the equations and check if they satisfy the given equations.