Solveeit Logo

Question

Question: If \(\tan \dfrac{\pi }{9},x\) and \(\tan \dfrac{5\pi }{18}\) are in AP and \(\tan \dfrac{\pi }{9},y\...

If tanπ9,x\tan \dfrac{\pi }{9},x and tan5π18\tan \dfrac{5\pi }{18} are in AP and tanπ9,y\tan \dfrac{\pi }{9},y and tan7π18\tan \dfrac{7\pi }{18} are also in AP, then
(a)2x=y\left( a \right)\,\,2x=y
(b)x>y\left( b \right)\,\,x>y
(c)x=y\left( c \right)\,\,x=y
(d)\left( d \right)\,None of these

Explanation

Solution

We know that if three numbers a,ba,b and cc are in AP, then b=a+c2.b=\dfrac{a+c}{2}. We will use the trigonometric identity given by tanx=sinxcosx.\tan x=\dfrac{\sin x}{\cos x}. We will also use the trigonometric identity sin(x+y)=sinxcosy+cosxsiny.\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y.

Complete step by step solution:
Let us consider tanπ9,x\tan \dfrac{\pi }{9},x and tan5π18\tan \dfrac{5\pi }{18}
It is given that the above given numbers are in AP.
We know that if three numbers a,ba,b and cc are in AP, then the middle number b=a+c2.b=\dfrac{a+c}{2}.
So, here, we can find the value of xx using the above equation.
Here, b=x,a=tanπ9b=x,\,a=\tan \dfrac{\pi }{9} and c=tan5π18.c=\tan \dfrac{5\pi }{18}.
So, we will get the average of the first and third term as x=tan5π9+tan5π182x=\dfrac{\tan \dfrac{5\pi }{9}+\tan \dfrac{5\pi }{18}}{2}
We know the trigonometric identity tanx=sinxcosx\tan x=\dfrac{\sin x}{\cos x}
Let us use this identity in the given case.
So, we will get 2x=sinπ9cosπ9+sin5π18cos5π18.2x=\dfrac{\sin \dfrac{\pi }{9}}{\cos \dfrac{\pi }{9}}+\dfrac{\sin \dfrac{5\pi }{18}}{\cos \dfrac{5\pi }{18}}.
We can see that the RHS of the above equation is the sum of two fractions with distinct denominators. So, we will take LCM.
Now, we will get 2x=sinπ9cos5π18+cosπ9sin5π18cosπ9cos5π182x=\dfrac{\sin \dfrac{\pi }{9}\cos \dfrac{5\pi }{18}+\cos \dfrac{\pi }{9}\sin \dfrac{5\pi }{18}}{\cos \dfrac{\pi }{9}\cos \dfrac{5\pi }{18}}
We know the trigonometric identity given by sin(x+y)=sinxcosy+cosxsiny.\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y.
So, we will get the numerator as sinπ9cos5π18+cosπ9sin5π18=sin(π9+5π18)\sin \dfrac{\pi }{9}\cos \dfrac{5\pi }{18}+\cos \dfrac{\pi }{9}\sin \dfrac{5\pi }{18}=\sin \left( \dfrac{\pi }{9}+\dfrac{5\pi }{18} \right)
When we substitute in the given problem, we will get 2x=sin(π9+5π18)cosπ9cos5π182x=\dfrac{\sin \left( \dfrac{\pi }{9}+\dfrac{5\pi }{18} \right)}{\cos \dfrac{\pi }{9}\cos \dfrac{5\pi }{18}}
We know that sin(π2x)=cosx.\sin \left( \dfrac{\pi }{2}-x \right)=\cos x.
So, we will get sin(π2π9)=cosπ9.\sin \left( \dfrac{\pi }{2}-\dfrac{\pi }{9} \right)=\cos \dfrac{\pi }{9}.
Similarly, we will get sin(π25π18)=cosπ18.\sin \left( \dfrac{\pi }{2}-\dfrac{5\pi }{18} \right)=\cos \dfrac{\pi }{18}.
Now, the denominator of the given problem will become 2x=sin(π9+5π18)sin(π2π9)sin(π25π18)2x=\dfrac{\sin \left( \dfrac{\pi }{9}+\dfrac{5\pi }{18} \right)}{\sin \left( \dfrac{\pi }{2}-\dfrac{\pi }{9} \right)\sin \left( \dfrac{\pi }{2}-\dfrac{5\pi }{18} \right)}
We know that π9+5π18=18π+45π9×18=63π9×18=7π18.\dfrac{\pi }{9}+\dfrac{5\pi }{18}=\dfrac{18\pi +45\pi }{9\times 18}=\dfrac{63\pi }{9\times 18}=\dfrac{7\pi }{18}.
Similarly, we will get π2π9=9π2π18=7π18.\dfrac{\pi }{2}-\dfrac{\pi }{9}=\dfrac{9\pi -2\pi }{18}=\dfrac{7\pi }{18}.
We also know that π25π18=18π10π36=8π36=2π9.\dfrac{\pi }{2}-\dfrac{5\pi }{18}=\dfrac{18\pi -10\pi }{36}=\dfrac{8\pi }{36}=\dfrac{2\pi }{9}.
Now, we will get 2x=sin7π18sin7π18sin2π9.2x=\dfrac{\sin \dfrac{7\pi }{18}}{\sin \dfrac{7\pi }{18}\sin \dfrac{2\pi }{9}}.
So, we will get 2x=1sin2π9=cosec2π9.......(1)2x=\dfrac{1}{\sin \dfrac{2\pi }{9}}=\cos ec\dfrac{2\pi }{9}.......\left( 1 \right)
Now, let us consider the AP tanπ9,y\tan \dfrac{\pi }{9},y and tan7π18\tan \dfrac{7\pi }{18}
Now, we will get 2y=tanπ9+tan7π182y=\tan \dfrac{\pi }{9}+\tan \dfrac{7\pi }{18}
So, we will get 2y=sinπ9cosπ9+sin7π18cos7π18.2y=\dfrac{\sin \dfrac{\pi }{9}}{\cos \dfrac{\pi }{9}}+\dfrac{\sin \dfrac{7\pi }{18}}{\cos \dfrac{7\pi }{18}}.
We can see that the RHS of the above equation is the sum of two fractions with distinct denominators. So, we will take LCM.
Now, we will get 2y=sinπ9cos7π18+cosπ9sin7π18cosπ9cos7π182y=\dfrac{\sin \dfrac{\pi }{9}\cos \dfrac{7\pi }{18}+\cos \dfrac{\pi }{9}\sin \dfrac{7\pi }{18}}{\cos \dfrac{\pi }{9}\cos \dfrac{7\pi }{18}}
We know the trigonometric identity given by sin(x+y)=sinxcosy+cosxsiny.\sin \left( x+y \right)=\sin x\cos y+\cos x\sin y.
So, we will get the numerator as sinπ9cos7π18+cosπ9sin7π18=sin(π9+7π18)\sin \dfrac{\pi }{9}\cos \dfrac{7\pi }{18}+\cos \dfrac{\pi }{9}\sin \dfrac{7\pi }{18}=\sin \left( \dfrac{\pi }{9}+\dfrac{7\pi }{18} \right)
When we substitute in the given problem, we will get 2y=sin(π9+7π18)cosπ9cos7π182y=\dfrac{\sin \left( \dfrac{\pi }{9}+\dfrac{7\pi }{18} \right)}{\cos \dfrac{\pi }{9}\cos \dfrac{7\pi }{18}}
We know that sin(π2x)=cosx.\sin \left( \dfrac{\pi }{2}-x \right)=\cos x.
Similarly, we will get sin(π27π18)=cos7π18.\sin \left( \dfrac{\pi }{2}-\dfrac{7\pi }{18} \right)=\cos \dfrac{7\pi }{18}.
Now, the denominator of the given problem will become 2y=sin(π9+7π18)cosπ9sin(π27π18)2y=\dfrac{\sin \left( \dfrac{\pi }{9}+\dfrac{7\pi }{18} \right)}{\cos \dfrac{\pi }{9}\sin \left( \dfrac{\pi }{2}-\dfrac{7\pi }{18} \right)}
We know that π9+7π18=18π+63π9×18=81π9×18=9π18=π2.\dfrac{\pi }{9}+\dfrac{7\pi }{18}=\dfrac{18\pi +63\pi }{9\times 18}=\dfrac{81\pi }{9\times 18}=\dfrac{9\pi }{18}=\dfrac{\pi }{2}.
Similarly, we will get π2π9=9π2π18=7π18.\dfrac{\pi }{2}-\dfrac{\pi }{9}=\dfrac{9\pi -2\pi }{18}=\dfrac{7\pi }{18}.
We also know that π27π18=18π14π36=4π36=π9.\dfrac{\pi }{2}-\dfrac{7\pi }{18}=\dfrac{18\pi -14\pi }{36}=\dfrac{4\pi }{36}=\dfrac{\pi }{9}.
Now, we will get 2y=sinπ2cosπ9sinπ9.2y=\dfrac{\sin \dfrac{\pi }{2}}{\cos \dfrac{\pi }{9}\sin \dfrac{\pi }{9}}.
Therefore, we will get 2y=1cosπ9sinπ9.2y=\dfrac{1}{\cos \dfrac{\pi }{9}\sin \dfrac{\pi }{9}}.
We will multiply and divide the RHS with 2.2.
We will get 2y=22cosπ9sinπ9.2y=\dfrac{2}{2\cos \dfrac{\pi }{9}\sin \dfrac{\pi }{9}}.
So, we will get 2y=2sin2π9=2cosec2π9.2y=\dfrac{2}{\sin \dfrac{2\pi }{9}}=2\cos ec\dfrac{2\pi }{9}.
Therefore, y=cosec2π9.......(2)y=\cos ec\dfrac{2\pi }{9}.......\left( 2 \right)
From equations (1)\left( 1 \right) and (2),\left( 2 \right), we will get y=cosec2π9=2x.y=\cos ec\dfrac{2\pi }{9}=2x.

Hence 2x=y.2x=y.

Note:
We know the trigonometric identity sinπ2=1.\sin \dfrac{\pi }{2}=1. We also know that sinx=1cosecx.\sin x=\dfrac{1}{\cos ecx}. We should always remember the identity sin2x=2sinxcosx.\sin 2x=2\sin x\cos x. We should remember that all the trigonometric functions are positive in the first quadrant.