Solveeit Logo

Question

Question: If \[\tan \dfrac{A}{2} =r\] then the value of \[\left( \sec A+\tan A\right) \] is equal to A) \[\d...

If tanA2=r\tan \dfrac{A}{2} =r then the value of (secA+tanA)\left( \sec A+\tan A\right) is equal to
A) 2+r2r\dfrac{2+r}{2-r}
B) 2r2+r\dfrac{2-r}{2+r}
C) 1+r1r\dfrac{1+r}{1-r}
D) 1r1+r\dfrac{1-r}{1+r}

Explanation

Solution

Hint: In this question it is given that we have to find the value of (secA+tanA)\left( \sec A+\tan A\right) , where tanA2=r\tan \dfrac{A}{2} =r. So to find the solution we have to write secA\sec A, tanA \tan A as 1cosA\dfrac{1}{\cos A}, sinAcosA\dfrac{\sin A}{\cos A} respectively. Also we have to change the angle AA to A2\dfrac{A}{2}, because as we know that tanA2=r\tan \dfrac{A}{2} =r and then after simplification we will get our required solution.
Complete step-by-step solution:
Let the given expression as
S=(secA+tanA)S=\left( \sec A+\tan A\right)
=(1cosA+sinAcosA)=\left( \dfrac{1}{\cos A} +\dfrac{\sin A}{\cos A} \right)
=(1+sinAcosA)=\left( \dfrac{1+\sin A}{\cos A} \right)
Now as we know that,
cosθ=cos2θ2sin2θ2\cos \theta =\cos^{2} \dfrac{\theta }{2} -\sin^{2} \dfrac{\theta }{2}, and
sinθ=2sinθ2cosθ2\sin \theta =2\sin \dfrac{\theta }{2} \cos \dfrac{\theta }{2}
so by using this formula, we get,
S=1+2sinA2cosA2cos2A2sin2A2S=\dfrac{1+2\sin \dfrac{A}{2} \cos \dfrac{A}{2} }{\cos^{2} \dfrac{A}{2} -\sin^{2} \dfrac{A}{2} }
=sin2A2+cos2A2+2sinA2cosA2cos2A2sin2A2=\dfrac{\sin^{2} \dfrac{A}{2} +\cos^{2} \dfrac{A}{2} +2\sin \dfrac{A}{2} \cos \dfrac{A}{2} }{\cos^{2} \dfrac{A}{2} -\sin^{2} \dfrac{A}{2} } [ since, sin2A2+cos2A2=1\sin^{2} \dfrac{A}{2} +\cos^{2} \dfrac{A}{2} =1]
As we know that,
a2+2ab+b2=(a+b)2a^{2}+2ab+b^{2}=\left( a+b\right)^{2} .......(1) and
a2b2=(a+b)(ab)a^{2}-b^{2}=\left( a+b\right) \left( a-b\right) .....(2),
so by applying identity (1) in numerator and identity (2) in denominator we get,
S=(cosA2+sinA2)2(cosA2+sinA2)(cosA2sinA2)S=\dfrac{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right)^{2} }{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right) \left( \cos \dfrac{A}{2} -\sin \dfrac{A}{2} \right) } [ taking a=cosA2a=\cos \dfrac{A}{2} & b=sinA2b=\sin \dfrac{A}{2}]
=(cosA2+sinA2)(cosA2sinA2)=\dfrac{\left( \cos \dfrac{A}{2} +\sin \dfrac{A}{2} \right) }{\left( \cos \dfrac{A}{2} -\sin \dfrac{A}{2} \right) }
Now dividing numerator and denominator by cosA2\cos \dfrac{A}{2}, we get,
S=1+(sinA2cosA2)1(sinA2cosA2)S=\dfrac{1+\left( \dfrac{\sin \dfrac{A}{2} }{\cos \dfrac{A}{2} } \right) }{1-\left( \dfrac{\sin \dfrac{A}{2} }{\cos \dfrac{A}{2} } \right) }
=1+tanA21tanA2=\dfrac{1+\tan \dfrac{A}{2} }{1-\tan \dfrac{A}{2} }
=1+r1r=\dfrac{1+r}{1-r} [since, tanA2=r\tan \dfrac{A}{2} =r]
Hence, the correct option is option C.
Note: While simplifying a big expression, try to express it in terms of one or two basic trigonometric functions, like we have transformed the above expression in terms of cosinecosine and sinesine, also try to find an order in the problem to apply trigonometric identities, properties and transformations.