Question
Mathematics Question on Trigonometric Functions
If tan(cotx)=cot(tanx), then sin2x is equal to :
A
(2n+1)π2
B
(2n+1)π4
C
(n(n+1)π2
D
(n(n+1)π4
Answer
(2n+1)π4
Explanation
Solution
Given, tan(cotx)=cot(tanx)=tan(2π−tanx) ⇒cotx=nπ+2π−tanx ⇒cotx+tanx=nπ+2π ⇒sinxcosx1=nπ+2π⇒sin2x1=2nπ+4π ⇒sin2x=2nπ+4π1=(2n+1)π4