Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If tan(cotx)=cot(tanx)\tan (\cot \, x) = \cot (\tan \, x), then sin2x\sin \, 2x is equal to :

A

2(2n+1)π\frac{2}{(2n + 1)\pi}

B

4(2n+1)π\frac{4}{(2n + 1)\pi}

C

2(n(n+1)π\frac{2}{(n(n + 1)\pi}

D

4(n(n+1)π\frac{4}{(n(n + 1)\pi}

Answer

4(2n+1)π\frac{4}{(2n + 1)\pi}

Explanation

Solution

Given, tan(cotx)=cot(tanx)=tan(π2tanx)\tan\left(\cot x\right) = \cot\left(\tan x\right) = \tan \left(\frac{\pi}{2} -\tan x\right) cotx=nπ+π2tanx \Rightarrow \cot x = n \pi+ \frac{\pi}{2} - \tan x cotx+tanx=nπ+π2 \Rightarrow \cot x + \tan x = n \pi+ \frac{\pi}{2} 1sinxcosx=nπ+π21sin2x=nπ2+π4 \Rightarrow \frac{1}{\sin x \cos x} = n \pi+ \frac{\pi}{2} \Rightarrow \frac{1}{\sin2x} = \frac{n\pi}{2} + \frac{\pi}{4} sin2x=1nπ2+π4=4(2n+1)π\Rightarrow \sin2x = \frac{1}{\frac{n\pi}{2} + \frac{\pi}{4}} = \frac{4}{\left(2n+1\right)\pi}