Solveeit Logo

Question

Question: If \[\tan \beta = \dfrac{{\tan \alpha + \tan \gamma }}{{1 + \tan \alpha \tan \gamma }}\]prove that \...

If tanβ=tanα+tanγ1+tanαtanγ\tan \beta = \dfrac{{\tan \alpha + \tan \gamma }}{{1 + \tan \alpha \tan \gamma }}prove that \sin 2\beta $$$$ = \dfrac{{\sin 2\alpha + \sin 2\gamma }}{{1 + \sin 2\alpha \sin 2\gamma }}

Explanation

Solution

Hint : So, here we need to first solve for tanβ\tan \beta and then we have to prove for sin2β\sin 2\beta . In order to prove, we need to know some trigonometric formulas are tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }},
sin(A+B)=sinACosB+CosASinB\sin (A + B) = \sin A\operatorname{Cos} B + \operatorname{Cos} A\operatorname{Sin} B,
cos(AB)=CosACosBSinASinB\cos (A - B) = \operatorname{Cos} A\operatorname{Cos} B - \operatorname{Sin} A\operatorname{Sin} B,
By using all trigonometric identities to get the required solution.

Complete step-by-step answer :
We are given, tanβ=tanα+tanγ1+tanαtanγ\tan \beta = \dfrac{{\tan \alpha + \tan \gamma }}{{1 + \tan \alpha \tan \gamma }}
First, comparing the trigonometric identity with the above function, then
Now, we know the formula, tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}.
=sinαcosα+sinγcosγ1+(sinαcosα)(sinγcosγ)= \dfrac{{\dfrac{{\sin \alpha }}{{\cos \alpha }} + \dfrac{{\sin \gamma }}{{\cos \gamma }}}}{{1 + \left( {\dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)\left( {\dfrac{{\sin \gamma }}{{\cos \gamma }}} \right)}}
Now, we need to cross multiply on both numerator and denominator, we will get;
=sinαcosγ+cosαsinγ1+(sinαcosα)(sinγcosγ)= \dfrac{{\sin \alpha \cos \gamma + \cos \alpha \sin \gamma }}{{1 + \left( {\dfrac{{\sin \alpha }}{{\cos \alpha }}} \right)\left( {\dfrac{{\sin \gamma }}{{\cos \gamma }}} \right)}}
=sinαcosγ+cosαsinγ1+(sinαsinγcosαcosγ)= \dfrac{{\sin \alpha \cos \gamma + \cos \alpha \sin \gamma }}{{1 + \left( {\dfrac{{\sin \alpha \sin \gamma }}{{\cos \alpha \cos \gamma }}} \right)}}
=sinαcosγ+cosαsinγcosαcosγ+sinαsinγ= \dfrac{{\sin \alpha \cos \gamma + \cos \alpha \sin \gamma }}{{\cos \alpha \cos \gamma + \sin \alpha \sin \gamma }}
Now, we know the formula of trigonometric function, we have
sin(A+B)=sinACosB+CosASinB\sin (A + B) = \sin A\operatorname{Cos} B + \operatorname{Cos} A\operatorname{Sin} B,
cos(AB)=CosACosBSinASinB\cos (A - B) = \operatorname{Cos} A\operatorname{Cos} B - \operatorname{Sin} A\operatorname{Sin} B,
So let us substitute the formulas in the above equation, we get;
=sin(α+γ)cos(αγ)= \dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}}
Therefore, tanβ=sin(α+γ)cos(αγ)\tan \beta = \dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}} ---------(1)
Now, let us take sin2β\sin 2\beta , which is given in the question.
sin2β=sin2α+sin2γ1+sin2αsin2γ\sin 2\beta = \dfrac{{\sin 2\alpha + \sin 2\gamma }}{{1 + \sin 2\alpha \sin 2\gamma }}
We know the formula for sin2β\sin 2\beta , which we will use, and it is given as:
sin2β=2tanβ1+tan2β\Rightarrow \sin 2\beta = \dfrac{{2\tan \beta }}{{1 + {{\tan }^2}\beta }}
As we mentioned earlier the formula for tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}, so let us substitute in the above mentioned equation, we get;
=2sin(α+γ)cos(αγ)1+(sin(α+γ)cos(αγ))2= \dfrac{{2\dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}}}}{{1 + {{\left( {\dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}}} \right)}^2}}}
Now, we need to again cross multiply for the above equation of denominator then we get,
=2sin(α+γ)cos(αγ)(cos(αγ))2+(sin(α+γ))2(cos(αγ))2= \dfrac{{2\dfrac{{\sin (\alpha + \gamma )}}{{\cos (\alpha - \gamma )}}}}{{\dfrac{{{{(\cos (\alpha - \gamma ))}^2} + {{(\sin (\alpha + \gamma ))}^2}}}{{{{(\cos (\alpha - \gamma ))}^2}}}}}
On simplifying, we get
=2sin(α+γ)cos(αγ)(cos(αγ))2+(sin(α+γ))2= \dfrac{{2\sin (\alpha + \gamma )\cos (\alpha - \gamma )}}{{{{(\cos (\alpha - \gamma ))}^2} + {{(\sin (\alpha + \gamma ))}^2}}}
Now, in the above equation, numerator is in the form of:
2sin(A)cos(B)=sin(A+B)+sin(AB)\Rightarrow 2\sin (A)\cos (B) = \sin (A + B) + \sin (A - B)
=sin(α+γ+αγ)+sin(α+γα+γ)cos2(αγ)+sin2(α+γ)= \dfrac{{\sin (\alpha + \gamma + \alpha - \gamma ) + \sin (\alpha + \gamma - \alpha + \gamma )}}{{{{\cos }^2}(\alpha - \gamma ) + {{\sin }^2}(\alpha + \gamma )}}
=sin(2α)+sin(2γ)cos2(αγ)+sin2(α+γ)= \dfrac{{\sin (2\alpha ) + \sin (2\gamma )}}{{{{\cos }^2}(\alpha - \gamma ) + {{\sin }^2}(\alpha + \gamma )}}
Now, let us multiply both numerator and denominator by 2, then:
=2[sin(2α)+sin(2γ)]2[cos2(αγ)+sin2(α+γ)]= \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{2[{{\cos }^2}(\alpha - \gamma ) + {{\sin }^2}(\alpha + \gamma )]}}
=2[sin(2α)+sin(2γ)]2cos2(αγ)+2sin2(α+γ)= \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{2{{\cos }^2}(\alpha - \gamma ) + 2{{\sin }^2}(\alpha + \gamma )}}
We know that ,

2cos2θ=1+cos2θ 2sin2θ=1cos2θ   \Rightarrow 2{\cos ^2}\theta = 1 + \cos 2\theta \\\ \Rightarrow 2{\sin ^2}\theta = 1 - \cos 2\theta \;

cos2θ=cos2θsin2θ\Rightarrow \cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta
cos2θ=2cos2θ1\Rightarrow \cos 2\theta = 2{\cos ^2}\theta - 1
cos2θ=12sin2θ\Rightarrow \cos 2\theta = 1 - 2{\sin ^2}\theta
Now, by using the above mentioned formula, we will substitute in the aforementioned equation, then we will get;
=2[sin(2α)+sin(2γ)]1+cos(2α2γ)+1cos(2α+2γ)= \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{1 + \cos (2\alpha - 2\gamma ) + 1 - \cos (2\alpha + 2\gamma )}}
=2[sin(2α)+sin(2γ)]2+cos(2α2γ)cos(2α2γ)= \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{2 + \cos (2\alpha - 2\gamma ) - \cos (2\alpha - 2\gamma )}}
Now, the denominator in the above equation is in the form of:
cos(AB)cos(A+B)=cosAcosB+sinAsinBcosAcosB+sinAsinB\Rightarrow \cos (A - B) - cos(A + B) = \cos A\cos B + \sin A\sin B - \cos A\cos B + \sin A\sin B
cos(AB)cos(A+B)=2sinAsinB\Rightarrow \cos (A - B) - cos(A + B) = 2\sin A\sin B
Now, by applying the above formula in the equation, we get:
=2[sin(2α)+sin(2γ)]2+2sin2αsin2γ= \dfrac{{2[\sin (2\alpha ) + \sin (2\gamma )]}}{{2 + 2\sin 2\alpha \sin 2\gamma }}
Now let us take two as common both in numerator and denominator, which gets cancelled,
=sin2α+sin2γ1+sin2αsin2γ= \dfrac{{\sin 2\alpha + \sin 2\gamma }}{{1 + \sin 2\alpha \sin 2\gamma }}
Therefore, L.H.S = R.H.S
Hence, Proved.

Note : It is must that most of the trigonometric equations always rely on formulas which are mentioned above and if we follow that then we will be able to achieve our solution. We need to prove the given problem by using trigonometric identity and substitution methods.