Solveeit Logo

Question

Question: If \( \tan \beta = \cos \theta \tan \alpha \) , then \( {\tan ^2}\left( {\dfrac{\theta }{2}} \right)...

If tanβ=cosθtanα\tan \beta = \cos \theta \tan \alpha , then tan2(θ2)={\tan ^2}\left( {\dfrac{\theta }{2}} \right) =
\eqalign{ & 1)\dfrac{{\sin \left( {\alpha + \beta } \right)}}{{\sin \left( {\alpha - \beta } \right)}} \cr & 2)\dfrac{{\cos \left( {\alpha - \beta } \right)}}{{\cos \left( {\alpha + \beta } \right)}} \cr & 3)\dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\sin \left( {\alpha + \beta } \right)}} \cr & 4)\dfrac{{\cos \left( {\alpha + \beta } \right)}}{{\cos \left( {\alpha - \beta } \right)}} \cr}

Explanation

Solution

Hint : In the given question, there are only two functions involved, that is cos\cos and tan\tan , but with different angles aa , bb and θ\theta . But the given options are in sin\sin and cos\cos functions. Therefore, we need to express tan\tan in terms of sin\sin and cos\cos functions. Later we can simplify it to bring it down to the form that are given in the options.
The formulas used to solve the given problem are:
\eqalign{ & 1 + \cos 2A = 2{\cos ^2}A \cr & 1 - \cos 2A = 2{\sin ^2}A \cr}

Complete step-by-step answer :
It is given that,
tanβ=cosθtanα\tan \beta = \cos \theta \tan \alpha
We need to find the value of tan2θ2{\tan ^2}\dfrac{\theta }{2}
This can be expressed as,
tan2(θ2)=sin2(θ2)cos2(θ2){\tan ^2}\left( {\dfrac{\theta }{2}} \right) = \dfrac{{{{\sin }^2}\left( {\dfrac{\theta }{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{\theta }{2}} \right)}}
Multiplying and dividing by 22 , we get
tan2(θ2)=2sin2(θ2)2cos2(θ2){\tan ^2}\left( {\dfrac{\theta }{2}} \right) = \dfrac{{2{{\sin }^2}\left( {\dfrac{\theta }{2}} \right)}}{{2{{\cos }^2}\left( {\dfrac{\theta }{2}} \right)}}
By using the above-mentioned formulas, we can write the RHS in the form of cos\cos function only,
tan2(θ2)=1cosθ1+cosθ{\tan ^2}\left( {\dfrac{\theta }{2}} \right) = \dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}
From given, we have,
cosθ=tanβtanα\cos \theta = \dfrac{{\tan \beta }}{{\tan \alpha }}
Substituting this in the above equation, we get,
tan2(θ2)=[1(tanβtanα)1+(tanβtanα)]{\tan ^2}\left( {\dfrac{\theta }{2}} \right) = \left[ {\dfrac{{1 - \left( {\dfrac{{\tan \beta }}{{\tan \alpha }}} \right)}}{{1 + \left( {\dfrac{{\tan \beta }}{{\tan \alpha }}} \right)}}} \right]
While taking LCM and simplifying, tanα\tan \alpha gets cancelled and we will be left with
tan2(θ2)=[(sinαcosαsinβcosβ)][(sinαcosα)+(sinβcosβ)]{\tan ^2}\left( {\dfrac{\theta }{2}} \right) = \dfrac{{\left[ {\left( {\dfrac{{\sin \alpha }}{{\cos \alpha }} - \dfrac{{\sin \beta }}{{\cos \beta }}} \right)} \right]}}{{\left[ {\left( {\dfrac{{\sin \alpha }}{{\cos \alpha }}} \right) + \left( {\dfrac{{\sin \beta }}{{\cos \beta }}} \right)} \right]}}
Now, again the terms in the denominator cancel out,
tan2(θ2)=(sinαcosβsinβcosα)(sinαcosβ+sinβcosα){\tan ^2}\left( {\dfrac{\theta }{2}} \right) = \dfrac{{\left( {\sin \alpha \cos \beta - \sin \beta \cos \alpha } \right)}}{{\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right)}}
This can be written as,
tan2(θ2)=sin(αβ)sin(α+β){\tan ^2}\left( {\dfrac{\theta }{2}} \right) = \dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\sin \left( {\alpha + \beta } \right)}}
Therefore, the final answer is, sin(αβ)sin(α+β)\dfrac{{\sin \left( {\alpha - \beta } \right)}}{{\sin \left( {\alpha + \beta } \right)}}
Hence, option (3) is the correct answer.
So, the correct answer is “Option 3”.

Note : When we look at a function, we need to decide which formula will be suitable to apply for it. Then we can add, subtract, multiply or divide the necessary terms. Learn the basic formulas and apply them as required for each step. Make sure that you simplify the answer according to the options. We can do so, by choosing the appropriate formulas as we move on with the steps. The options look similar and confusing, be very careful while choosing the right one.