Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If tanα=ba,a>b>0\tan \alpha =\frac{b}{a},a>b>0 and if $ 0

A

2sinαcos2α\frac{2\sin \alpha }{\sqrt{\cos 2\alpha }}

B

2cosαcos2α\frac{2\cos \alpha }{\sqrt{\cos 2\alpha }}

C

2sinαsin2α\frac{2\sin \alpha }{\sqrt{\sin 2\alpha }}

D

2cosαsin2α\frac{2\cos \alpha }{\sqrt{\sin 2\alpha }}

Answer

2sinαcos2α\frac{2\sin \alpha }{\sqrt{\cos 2\alpha }}

Explanation

Solution

Given, tanα=ba,a>b>0tan \, \alpha=\frac{b}{a},a>b>0
Now, a+bababa+b\sqrt{\frac{a+b}{a-b}}-\sqrt{\frac{a-b}{a+b}}
=a+ba+bab.a+b=2ba2b2=\frac{a+b-a+b}{\sqrt{a-b}.\sqrt{a+b}}=\frac{2b}{\sqrt{{{a}^{2}}-{{b}^{2}}}}
=2ba1(ba)2=\frac{2\frac{b}{a}}{\sqrt{1-{{\left( \frac{b}{a} \right)}^{2}}}}
=2tanα1tan2α=\frac{2\tan \alpha }{\sqrt{1-{{\tan }^{2}}\alpha }}
=2sinαcosαcos2αsin2αcos2α=2sinacos2α=\frac{2\frac{\sin \alpha }{\cos \alpha }}{\sqrt{\frac{{{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha }{{{\cos }^{2}}\alpha }}}=\frac{2\sin a}{\sqrt{\cos 2\alpha }}