Solveeit Logo

Question

Question: If \( \tan \alpha =\dfrac{p}{q} \) , where \( \alpha =6\beta \) , \( \alpha \) being an acute angle,...

If tanα=pq\tan \alpha =\dfrac{p}{q} , where α=6β\alpha =6\beta , α\alpha being an acute angle, prove that : \dfrac{1}{2}\left\\{ p\operatorname{cosec}2\beta -q\sec 2\beta \right\\}=\sqrt{{{p}^{2}}+{{q}^{2}}} .

Explanation

Solution

To prove the above equation, first you need to convert cosec2β\operatorname{cosec}2\beta and sec2β\sec 2\beta into sin2β\sin 2\beta and cos2β\cos 2\beta , using the identity sinθ=1cosecθ\sin \theta =\dfrac{1}{\operatorname{cosec}\theta } and cosθ=1secθ\cos \theta =\dfrac{1}{\sec \theta } . Then, use the identity sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta and multiply numerator and denominator with p2+q2\sqrt{{{p}^{2}}+{{q}^{2}}} and use triangle law of trigonometry and write sinα=pp2+q2\sin \alpha =\dfrac{p}{\sqrt{{{p}^{2}}+{{q}^{2}}}} and cosα=qp2+q2\cos \alpha =\dfrac{q}{\sqrt{{{p}^{2}}+{{q}^{2}}}} .Now, use formula sin(AB)=sinAcosBsinBcosA\sin \left( A-B \right)=\sin A\cos B-\sin B\cos A and put α=6β\alpha =6\beta .

Complete step-by-step answer:
Since, we known that sinθ=1cosecθ\sin \theta =\dfrac{1}{\operatorname{cosec}\theta } and cosθ=1secθ\cos \theta =\dfrac{1}{\sec \theta } , then we can write LHS of the above equation \dfrac{1}{2}\left\\{ p\operatorname{cosec}2\beta -q\sec 2\beta \right\\}=\sqrt{{{p}^{2}}+{{q}^{2}}} as:
=\dfrac{1}{2}\left\\{ \dfrac{p}{\sin 2\beta }-\dfrac{q}{\cos 2\beta } \right\\}
Take LCM of sin2β\sin 2\beta and cos2β\cos 2\beta , then we will get:
=\dfrac{1}{2}\left\\{ \dfrac{p\cos 2\beta -q\sin 2\beta }{\sin 2\beta \cos 2\beta } \right\\}
=pcos2βqsin2β2sin2βcos2β=\dfrac{p\cos 2\beta -q\sin 2\beta }{2\sin 2\beta \cos 2\beta }
We know that sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta , hence we will get
=pcos2βqsin2βsin4β=\dfrac{p\cos 2\beta -q\sin 2\beta }{\sin 4\beta }
Now, we will multiply numerator and denominator with p2+q2\sqrt{{{p}^{2}}+{{q}^{2}}} , we will get:
=\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\\{ \dfrac{p\cos 2\beta -q\sin 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}} \right\\}
Now, split p2+q2\sqrt{{{p}^{2}}+{{q}^{2}}} over both the numerator term:
=\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\\{ \dfrac{p\cos 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}}-\dfrac{q\sin 2\beta }{\sqrt{{{p}^{2}}+{{q}^{2}}}} \right\\}............\left( 1 \right)
Now, we will use triangle law of trigonometry (i.e. sinθ=perpendicularhypotenuse\sin \theta =\dfrac{perpendicular}{hypotenuse} , cosθ=basehypotenuse\cos \theta =\dfrac{base}{hypotenuse} and tanθ=perpendicularbase\tan \theta =\dfrac{perpendicular}{base})
It is given in question that tanα=pq\tan \alpha =\dfrac{p}{q} , hence perpendicular of the triangle is ‘p’ and its base is ‘q’, then, the hypotenuse will become p2+q2\sqrt{{{p}^{2}}+{{q}^{2}}} , so we can draw the below diagram:

From the figure, it can be seen that we can write sinα=pp2+q2\sin \alpha =\dfrac{p}{\sqrt{{{p}^{2}}+{{q}^{2}}}} and cosα=qp2+q2\cos \alpha =\dfrac{q}{\sqrt{{{p}^{2}}+{{q}^{2}}}} .
Hence, the above equation (1) will become:
=\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\left\\{ \sin \alpha \cos 2\beta -\cos \alpha \sin 2\beta \right\\}
Now, by using the formula sin(AB)=sinAcosBsinBcosA\sin \left( A-B \right)=\sin A\cos B-\sin B\cos A , we can rewrite the above equation as:
=p2+q2sin4βsin(α2β)=\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( \alpha -2\beta \right)
Now, we will put α=6β\alpha =6\beta in the above equation, then we will get:
=p2+q2sin4βsin(6β2β)=\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( 6\beta -2\beta \right)
=p2+q2sin4βsin(4β)=\dfrac{\sqrt{{{p}^{2}}+{{q}^{2}}}}{\sin 4\beta }\sin \left( 4\beta \right)
=p2+q2=\sqrt{{{p}^{2}}+{{q}^{2}}} = RHS
Hence, LHS = RHS
This is our required proof.

Note: Students are required to check that weather α\alpha is an acute angle or not, otherwise there is chance of change of sign while writing sinα=pp2+q2\sin \alpha =\dfrac{p}{\sqrt{{{p}^{2}}+{{q}^{2}}}} and cosα=qp2+q2\cos \alpha =\dfrac{q}{\sqrt{{{p}^{2}}+{{q}^{2}}}} , if α\alpha become greater than 9090{}^\circ .