Solveeit Logo

Question

Question: If \(\tan \alpha = \dfrac{1}{7}\) and \(\tan \beta = \dfrac{1}{3}\), then \(\cos 2\alpha \) is equal...

If tanα=17\tan \alpha = \dfrac{1}{7} and tanβ=13\tan \beta = \dfrac{1}{3}, then cos2α\cos 2\alpha is equal to:
(A) sin2β\sin 2\beta
(B) sin4β\sin 4\beta
(C) sin3β\sin 3\beta
(D) None of these

Explanation

Solution

The given question deals with finding the value of trigonometric expression doing basic simplification of trigonometric functions by using some of the simple trigonometric formulae such as double angle formula for cosine in terms of tangent as cos2x=1tan2x1+tan2x\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}. Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem. We must know the simplification rules to solve the problem with ease. We first find the value of cos2α\cos 2\alpha using tanα=17\tan \alpha = \dfrac{1}{7} and then find the values of all the options one by one.

Complete step by step answer:
In the given problem, we are given tanα=17\tan \alpha = \dfrac{1}{7} and tanβ=13\tan \beta = \dfrac{1}{3}.
Now, we have to find the expression whose value is equal to cos2α\cos 2\alpha .
So, we have, cos2α\cos 2\alpha .
We know the double angle formula for cosine cos2x=1tan2x1+tan2x\cos 2x = \dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}.
So, we get, cos2α=1tan2α1+tan2α\cos 2\alpha = \dfrac{{1 - {{\tan }^2}\alpha }}{{1 + {{\tan }^2}\alpha }}.
We are given the value of tanα\tan \alpha as (17)\left( {\dfrac{1}{7}} \right). So, we get,
cos2α=1(17)21+(17)2\Rightarrow \cos 2\alpha = \dfrac{{1 - {{\left( {\dfrac{1}{7}} \right)}^2}}}{{1 + {{\left( {\dfrac{1}{7}} \right)}^2}}}
Computing the squares of the terms, we get,
cos2α=1(149)1+(149)\Rightarrow \cos 2\alpha = \dfrac{{1 - \left( {\dfrac{1}{{49}}} \right)}}{{1 + \left( {\dfrac{1}{{49}}} \right)}}
Taking LCM in numerator and denominator, we get,
cos2α=(49149)(49+149)\Rightarrow \cos 2\alpha = \dfrac{{\left( {\dfrac{{49 - 1}}{{49}}} \right)}}{{\left( {\dfrac{{49 + 1}}{{49}}} \right)}}
cos2α=4850\Rightarrow \cos 2\alpha = \dfrac{{48}}{{50}}
Cancelling the common factors in numerator and denominator, we get,
cos2α=2425\Rightarrow \cos 2\alpha = \dfrac{{24}}{{25}}
Now, we analyze the options and find the values of expression in the options. So, we get,
Option (A):
We have, sin2β\sin 2\beta .
We are given the value of tanβ\tan \beta as 13\dfrac{1}{3}. We also know the double angle formula for sine as sin2x=2tanx1+tan2x\sin 2x = \dfrac{{2\tan x}}{{1 + {{\tan }^2}x}}. So, we get,
sin2β=2tanβ1+tan2β\Rightarrow \sin 2\beta = \dfrac{{2\tan \beta }}{{1 + {{\tan }^2}\beta }}
So, putting value of tanβ\tan \beta , we get,
sin2β=2×131+(13)2\Rightarrow \sin 2\beta = \dfrac{{2 \times \dfrac{1}{3}}}{{1 + {{\left( {\dfrac{1}{3}} \right)}^2}}}
Simplifying the terms, we get,
sin2β=231+(19)\Rightarrow \sin 2\beta = \dfrac{{\dfrac{2}{3}}}{{1 + \left( {\dfrac{1}{9}} \right)}}
sin2β=(23)(109)\Rightarrow \sin 2\beta = \dfrac{{\left( {\dfrac{2}{3}} \right)}}{{\left( {\dfrac{{10}}{9}} \right)}}
sin2β=(23)×(910)\Rightarrow \sin 2\beta = \left( {\dfrac{2}{3}} \right) \times \left( {\dfrac{9}{{10}}} \right)
sin2β=(35)\Rightarrow \sin 2\beta = \left( {\dfrac{3}{5}} \right)
Now, Option (B):
We have sin4β\sin 4\beta .
So, we first evaluate the value of cos2β\cos 2\beta as well.
So, we have, tanβ=13\tan \beta = \dfrac{1}{3}.
cos2β=1tan2β1+tan2β\cos 2\beta = \dfrac{{1 - {{\tan }^2}\beta }}{{1 + {{\tan }^2}\beta }}
cos2β=1(13)21+(13)2\Rightarrow \cos 2\beta = \dfrac{{1 - {{\left( {\dfrac{1}{3}} \right)}^2}}}{{1 + {{\left( {\dfrac{1}{3}} \right)}^2}}}
On further simplifications
cos2β=1(19)1+(19)\Rightarrow \cos 2\beta = \dfrac{{1 - \left( {\dfrac{1}{9}} \right)}}{{1 + \left( {\dfrac{1}{9}} \right)}}
cos2β=(89)(109)\Rightarrow \cos 2\beta = \dfrac{{\left( {\dfrac{8}{9}} \right)}}{{\left( {\dfrac{{10}}{9}} \right)}}
Simplifying the expression further, we get,
cos2β=45\Rightarrow \cos 2\beta = \dfrac{4}{5}
Now, we can find the value of sin4β\sin 4\beta using sin2x=2sinxcosx\sin 2x = 2\sin x\cos x.
So, sin4β=2(sin2β)(cos2β)\sin 4\beta = 2\left( {\sin 2\beta } \right)\left( {\cos 2\beta } \right)
sin4β=2(35)(45)\Rightarrow \sin 4\beta = 2\left( {\dfrac{3}{5}} \right)\left( {\dfrac{4}{5}} \right)
sin4β=2425\Rightarrow \sin 4\beta = \dfrac{{24}}{{25}}
So, the value of sin4β\sin 4\beta is 2425\dfrac{{24}}{{25}}. Hence, cos2α=sin4β\cos 2\alpha = \sin 4\beta . Thus, Option (B) is the correct answer.

Note:
We must have a strong grip over the concepts of trigonometry, related formulae and rules to ace these types of questions. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such types of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations.