Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If tanAtanB=x\tan A - \tan B = x and cotBcotA=y\cot B - \cot A = y, then cot(AB)=\cot (A- B) =

A

1y1x\frac{1}{y} -\frac{1}{x}

B

1x1y\frac{1}{x} - \frac{1}{y}

C

1x+1y\frac{1}{x} + \frac{1}{y}

D

noneofthesenone\, of\, these

Answer

1x+1y\frac{1}{x} + \frac{1}{y}

Explanation

Solution

We have, tanAtanB=x\tan A - \tan B = x and cotBcotA=y\cot B - \cot A = y
1tanB1tanA=y\Rightarrow \frac{1}{\tan B } - \frac{1}{\tan A} =y
tanAtanBtanAtanB=yxy=tanAtanB\frac{\tan A -\tan B}{\tan A \tan B} = y \Rightarrow \frac{x}{y} = \tan A \tan B
cot(AB)=1tan(AB)=1tanAtanB1+tanAtanB\cot\left(A-B\right)= \frac{1}{\tan \left(A-B\right) } = \frac{1}{\frac{\tan A -\tan B}{1 +\tan A \tan B}}
=1x1+xy=y+xxy=1x+1y= \frac{1}{\frac{x}{1+ \frac{x}{y}}} = \frac{y+x}{xy } = \frac{1}{x} + \frac{1}{y}