Solveeit Logo

Question

Question: If $\tan A = \frac{1}{2}, \tan B = \frac{1}{3}$ then $\tan(A+2B)$ has the value...

If tanA=12,tanB=13\tan A = \frac{1}{2}, \tan B = \frac{1}{3} then tan(A+2B)\tan(A+2B) has the value

Answer

2

Explanation

Solution

We are given:

tanA=12,tanB=13\tan A = \frac{1}{2}, \quad \tan B = \frac{1}{3}
  1. Find tan(A+B)\tan(A+B):

    tan(A+B)=tanA+tanB1tanAtanB=12+1311213=3+26116=5656=1.\tan(A+B) = \frac{\tan A + \tan B}{1-\tan A\,\tan B} = \frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\cdot\frac{1}{3}} = \frac{\frac{3+2}{6}}{1-\frac{1}{6}} = \frac{\frac{5}{6}}{\frac{5}{6}} = 1.
  2. Find tan(A+2B)\tan(A+2B) (using the addition formula again):

    tan(A+2B)=tan((A+B)+B)=tan(A+B)+tanB1tan(A+B)tanB=1+131113=4323=2.\tan(A+2B) = \tan((A+B)+B) = \frac{\tan(A+B) + \tan B}{1-\tan(A+B)\,\tan B} = \frac{1 + \frac{1}{3}}{1- 1\cdot\frac{1}{3}} = \frac{\frac{4}{3}}{\frac{2}{3}} = 2.

Answer: tan(A+2B)=2\tan(A+2B)=2