Question
Question: If $\tan A = \frac{1}{2}, \tan B = \frac{1}{3}$ then $\tan(A+2B)$ has the value...
If tanA=21,tanB=31 then tan(A+2B) has the value

Answer
2
Explanation
Solution
We are given:
tanA=21,tanB=31-
Find tan(A+B):
tan(A+B)=1−tanAtanBtanA+tanB=1−21⋅3121+31=1−6163+2=6565=1. -
Find tan(A+2B) (using the addition formula again):
tan(A+2B)=tan((A+B)+B)=1−tan(A+B)tanBtan(A+B)+tanB=1−1⋅311+31=3234=2.
Answer: tan(A+2B)=2