Solveeit Logo

Question

Question: If \(\tan A = \frac{1 - \cos B}{\sin B},\) find\(\tan 2A\)in terms of \(\tan B\)and show that...

If tanA=1cosBsinB,\tan A = \frac{1 - \cos B}{\sin B}, findtan2A\tan 2Ain terms of tanB\tan Band show that

A

tan2A=tanB\tan 2A = \tan B

B

tan2A=tan2B\tan 2A = \tan^{2}B

C

tan2A=tan2B+2tanB\tan 2A = \tan^{2}B + 2\tan B

D

None of the above

Answer

tan2A=tanB\tan 2A = \tan B

Explanation

Solution

tanA=1cosBsinB=2sin2(B/2)2sin(B/2)cos(B/2)=tanB2\tan A = \frac{1 - \cos B}{\sin B} = \frac{2\sin^{2}(B/2)}{2\sin(B/2)\cos(B/2)} = \tan\frac{B}{2}

tan2A=tanB\tan 2A = \tan B.